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A Force Method is presented for the solutionof the structural influence
coefficients (SICs), internal load distribution, and buckling character-
istics of a redundant elastic beam system including beam-column
effects, The formulation is general to the extent of considering each
structural element to have both variable bending and shear flexibilities;
the extension to include torsion and axial flexibilities is indicated, An
iterative procedure is developed for the analysis of the most general
redundant case in which beam-column effects cause interaction between
the external loading and the redundant internal reactions. The method of
solution is illustrated by three examples. The first two examples deal
with a doubly redundant two member frame under two types of loading: a
panel point loading, and a transverse loading at an intermediate point on
one of its members. The first example leads to a straight forward
redundant beam-column problem since the axial loading of the two
members is known at the outset. The second example leads to a non-
linear beam-column problem requiring the iterative solution and provides
an illustration of the general procedure. The third example is a case of
non-conservative loading, a clamped column tangentially loaded at its
free end. The derivation of the static SICs is shown, and the non-
conservative buckling load is determined by utilizing the unsymmetrical
SICs in vibration analyses up to the point of frequency coalescence.

NOMENCLATURE
Element of matrix defined in Equation 31

Effective cross~section area for transverse shear stfess
Element of structural influence coefficient matrix

Element of redundant structural flexibility matrix without beam-column
effects

Element of statically determinate flexibility matrix without beam-column
effects

Element of matrix defined in Equation 32

*

¥ K

This paper is based on a computer program developed at the- Aerospace Corporation by the
author and his colleagues Edith F. Farkas, Gerard L, Commerford and Heather A, Malcom.
The derivation of equations, example problems, and programming logic and listing are
given in Reference 1, The present paper outlines the derivation of the equations and illus-
trates some wider applications of the method,
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Element of matrix of beam-column effects of redundant structure

Element of matrix of beam-column effects of statically determinate
structure '

Element of matrix defined in Equation 33

Scale factor for beam-column axial loading

Young’s modulus of elasticity

Modulus of rigidity

Effective cross-section moment of inertia in bending

Number of external loads inducing beam-~column effects

Bending flexibility constant

Transverse shear flexibility constant

Coefficient of transverse shear stress at neutral axis
Length of structural element

Bending moment

Bending moment caused by virtual loading

Number of structural elements

External load

Virtual external load

External lJoad that induces beam-column effects
Number of redundants

Transverse shear

Transverse shear caused by virtual loading
Redundaﬁt internal reaction

Redundant reaction caused by virtual loading; axial coordinate of structural
element '

Deflection along structural element

Deflection of structural panel or control points at which virtual loads are
applied

Buckling eigenvalue
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Subscripts
cr Critical
f Final
i Inboard
i Dummy subscript denoting number of external ioads inducing beam-column
effects
n Iteration number; dummy subscript denoting structural element number
o QOutboard
p Reaction in cut structure to virtual external loading
r Dummy subseript denoting redundant number
x Reaction in cut structure to virtual internal redundant loading
Matrix Notation*
[] Square matrix
[ ]T Transposed matrix
[ ]~I Inverse of matrix
{ } Column matrix
L Row matrix
FJ Diagonal matrix
11 Unit diagonal matrix

Note: Additional symbols are defined as needed in the example problems.

INTRODUC TION

For many heavily loaded structural configurations, a significant increase in transverse
flexibility may resuit from beam-column effects. This inturn will affect the transverse vibra-
tion characteristics that can be determined by collocation (i.e., lumped parameter) methods
using static structural influence coefficients (SICs). This paper, therefore, develops the SICs
and related data on internal load distributions for the general problem of a built-up redundant
structure with variable bending and shear flexibilities, subjected to sufficiently large external
loading that beam-column effects must be accounted for. The buekling characteristics of the
structure are also determined. The effects of temperature are considered to the extent that
they determine the material properties of each gtructural element; no thermally induced
stresses are considered.

*Ed. Because of the unique symbolisms in this paper bold face type is not used to represent
matrices
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The present development is a further extension of the method of Ogness (Reference 2},
Earlier extensions have included 1edundant box beams with varying depth, spar cap areas, and
shear web thicknesses (Reference 3), the addition of thermal loads (Reference 4), and
statically determinate beams with beam-column effects (Reference 5). The method is classi-
fied as a Force Method according to Pestel and Leckie (Reference 6). The method of Ogness
was based on an application of Castiglianp’s First Theorem, However, the First Theorem
cannot be applied directly to the beam-column problem,* although it can be modified ap-
propriately as shown by Gallagher and Padlog (Reference 7). Rather than utilize the modified
First Theorem in the present derivation we turn to the method of virtual work.
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Figure 1. Geometry and Loading of nth Structural Element

GENERAL EQUATIONS AND SOLUTION OF THE LINEAR CASE

Consider a redundant structure composed of Nstructural elements having bending and shear
flexibilities, and assume for each element that the moment varies linearly from its inboard
value M; to its outboard value Mg and that the shear V is constant along the length of the
element**, The geometry and loading of a typical element are shown in Figure 1. The internal
reactions in a given R-degree redundant elastic structure to a system of external concentrated
loads can be expressed as linear combinations of the known external loads and a set of
arbitrarily chosen internal redundant loads equal in number to the degree of redundancy. In
addition, the internal reactions induced by beam-column effects can be expressed as linear
combinations of the deflections of the points of application of the external loads, The hasic
conditions that the external loads, the internal redundants, and the deflections must gatisfy are
the conditions of static equilibrium, By imagining the structure to be ‘“cut’’ in R places such
that it is capable of sustaining loads only in a staticaily determinate manner, and by introduc-
ing each of the external loads, each of the redundants at its corresponding cut, and each of the
deflections in turn, one can determine the reactions of each structural element by applying
only the conditions of static equilibrium, The combined effects of the external loads, the
internal redundants, and the deflections then define the totul internal reactions of each

*The derivation of Reference 5 therefore is incorrect even though its end results are correct
as will be shown, The reason for the rather fortuitous results is evident in the equation for
virtual work, Equation (28).

**Reference 1 also considers torsion and axial flexibilities and assumes not only that the
shear is constant along each element but also that the torque and axial force are constant.
Accordingly, the shear terms presented here may be regarded as typical of the three
loadings and flexibilities. The limitation here to bending and shear flexibilities is only for
the sake of brevity.
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structural element. If we denote the set of external loads* by {P }, the deflections of each of
their points of application paraliel to their lines of action by{ 8}, and the set of redundants
by{x}. the total internal reactions of each structural element may be summarized in the

following matrix expressions,
{Mi} :Mi/P] {P} + :Mi/x] {x} + TMEIS] {8} (
:MOIP] {p} + :MO/X] x} + :MD/S] {8} (2)

{wo}

{v} v /F'] {P} + Wx] {x} + [vr S] {8} (3)
The elements of the various coefficient matrices are determined by principles of statics; that
is, the first element of the matrix [M;/PJ is the coefficient (a length if the load is a force) that
gpecifies the moment on the inboard end of the first structural element due to the first
external load, the first element of the matrix [M;/X]is the coeffictent that specifies the
moment on the inboard end of the first structural element due to the first redundant, and the

first element of the matrix [M;/8]is the coefficient that specifies the moment on the inboard
end of the first structural element induced through beam-column effects by the first displace-

ment. The calculation of the elements of the m:trices of {P}and {X}has been discussed in
References 2 to 4, The calculation of the elements of the matrices of coefficients of {3} has
heen discussed in Reference 5 for the case of a statically determinate beam. A general
discussion with illustrations by several examples of the calculation of the various matrix
elements will be given in a later section. However, the relationship between the coefficients
of {8 }and the external loading warrants some additional remarks at this point, It is necessary
to make a distinction between two types of external loading: We distinguish between the
set{ P }that causes the deflections {3} and another set of external loads {Q}that introduces the
heam-column effects. The two sets may be independentor they may be identical; the relation-
ship in any instance is determined by the structural configuration. The beam- column effects,
i,e., the coefficients of { d}in Equations 1 to 3, depend on the distributed reactions (including
redundants} to {Q }throughout the structure. Therefore, in general for a redundant structure,
each coefficient of {® }is expressed as alinear combination of the effects of each load Q acting
upon the statically determinate structure and each redundant reaction X, The necessary linear
combinations of matrices may be indicated as follows.

i

[MEIS] = ; Q; [M,./SQJ + r% X, [Mi/Sx,] (4)
W8] = 5 o [wr2a] $oxfmax] 0w
[v 3] - )J: o [v8q] + i X, [v 78x] (6)

S
T

r

where J is the number of loads @, and R is the number of redundants, It is apparent from
Equations 1 to 6 that the most general problem in which the redundants and the deflections are

*The gencral nature of the external Joads should be emphasized. I a load P is a force, the con-
sequont deflection % is 4 translation, whereas if P is a moment, the deflection & becomes au
rotation, The redundants may also be either forces or moments, but of course, no relative
deflection results from their action. '
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interdependent is nonlinear and requires an approximate solution. However, for a wide class
of problems, either there is no interaction between the redundants and the deflections or, at
least, any interaction may be neglected. Then the first terms of Equations 4 to 6 are sufficient
to account for beam-column effects, and the determination of redundants and deflections
becomes a linear problem. We consider the solution of this linear problem in the present
section, and then consider modifications of the linear solution to obtain an iterative solution to
the nonlinear preblem in the next section.

We begin by considering a virtual load (or unit dummy load) app.ied to the statically deter-
minate structure at the point of application and in the direction of one of the external loads but
in the absence of all external loading. We denote its reacting moment and shear throughout the
structure by mp and vp, respectively. Then the deflection in the direction of this virtual load,
when all external loads are applied, is the work done by the virtual load,

3=Z f { Mm
=2l o

. /EI+va/kAvG)dx (7)

P

where M and V are, respectively, the total moment and shear in the structure caused by the
external loading, including the secondary effects of deflection as well as the effects of all of the
redundant reactions. The condition that determines the redundant reactions is that a virtual
load applied at the point of action and in the direction of a redundant can do no work, If we
denote the reacting moment and shear to this virtual redundant load by m  and v, , respectively,
then the redundant reaction when all external loads are applied is foundx from

N 2
2 [ (Mm /eI + Vv, 7kA G) dx = 0 (8)
n=l o

With certain reasonably accurate approximations, the integrals of Equations 7 and 8 can be
evaluated and the equations may be replaced by matrix expressions. We have already assumed

that the bending moment varies linearly along the length of each structural element and that
the shear is constant; i.e.,

M = M (I-x/8) + M, (x/£) (9
mo= m, (1-x/8) + rnO(x/ﬁ) {10}
V,v = constants (i

within each element. In addition, we shall approximate the reciprocals of the stiffnesses as
varying linearly along the length of each element,

I7EL = CV/EI) - x/8) + (I/E T )(x/4) (12)
L/KA,G = (17K A6 (I-x/8) + (17K, A G,)(x/L) (13)

This form of approximation to the stiffnesses also allows inclusion of variations in material
properties, e.g., with temperature. The substitution of Equations 9 to 13 into Equations 7 and 8
permits evaluation of the integrals and leads to the following expressions for the deflection of
one of the loaded points. N

8 = X [(m K +m_K. )M
o [ pi bi po "bio © i (14)

+ (mpo Koo + Moi Kpio )Mo+vp K,V ]
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and for one of the redundants
N

2 [("‘xi Kpi * Mo Kpio ) M;

n= {15)

M (mxo I(bo"' Myl Kbio} Mo + Yx I(v V] =0

where the flexibility constants* are

Kbi = (2212) (3/E‘Ii +t/E°I°) (16)
K = (R/12)(3/E1 +I/E.I ) 17
bo 00 it

Kpio = (174) Kpi + xbo) {18)
K, = (L72)¢ 17k A, G+ 1/k A, G, ) {19)

Equations 14 and 15 may be written in matrix form as

& = {{mpi }T I-Kt;iJ + {mpo }T [Kbio'l){Ml} +({mr»o}T Koo
¢ {mpi LR ) {Mo} +{vp}TfK,J{v} (20

Cma} TRy + {"‘XO}T Myd) {M} + 1 {mao} MK

-l-{mxl}T erioJ) {Mo}-'- {\ix }TFK\,J {V} =0

Because the virtual loads are applied to the statically determinate structure, the virtual
reactions may be found from Equations 1 to 3 by identifying corresponding terms

{mpi} z [I\‘!i /P] {p} (22)

and

(21

{mpc} = [M,/P] {p} (23}
{vp} = [v/F] {p} (24)
{ma} = [irx] {5} (25)
{meo} = Morx] {x} | (28)

{vx } = [wsx] {x} (27}

*Including torsional and axial flexibilities and assuming linear variations in their reciprocals
and constancy of the torque and axial force along the element leads to the torsion and axial
tlexibility constants K, = £/2) (1/G;J; +1/Gyd,) and K, = “&/2) {1/E;Agj + 1/EgA,,), where
J and A are the effective polar moment of inertia and area for axial stress for the cross-
section, respectively; cif., footnote, p. 4.
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where{ p Jand{x }are the virtual external load matrix and the virtual redundant load matrix,
respectively (N.B., the only nonzero element in{p} is taken as unity and corresponds to the
point whose deflection is being calculated, and, similarly, the only nonzero elemerit in {x }is
taken as unity and corresponds to the particular redundant being investigated)., By considering
a virtual external load to be applied to each point of external loading in turn, one may rewrite
Equation 20 a sufficient number of times to determine ail of the deflections. The resulting
equations may be combined into a single matrix equation*.

{8} = ([mp]" [k, J + [y rel" Ly {Mi} + ([mye]’ [y,
+ [mep] T 1 {w} + Dwel T, | {v}

In a similar manner, if we consider a virtual redundant load applied to each cut in turn,
Equation 21 may be rewritten a sufficient number of times to determine all of the redundants,
and the equations may be summarized in another matrix equation,

([Mi/x]Tbe,J + [MOIX]T [ Kpio)) {M,} + ([Wx]T Ky,

(28}

+ [x]" ko ) (M} + [urx] T ] {v} = o e
Ii Equations 1 to 3 are substituted into Equation 29, the equation for the redundants may be
written
[A]{x} + Ee]{P} + [c] {8} 2 0 (30)
where T T T
[a] = ([msx] ‘{Kblj + [M/x]” Tiggo 13 Tigrx] + [vgrxT [k, ]

+ [Mi/X]T [Kiod ) [Mgrx] + v [, [vsx] (31)

6] = (Dm/xT ficg, ) + I/ iy, ) [me] + ¢ DT [, ]
[T T, 03 [yl +Lvnd’ [ ) [vre] 52
[ = Do ficyd + Dagx]” Ty 1> s8]+ ( Iy M, J .
33

+ [M,/x]T [ Kyod) M) + [wrx]" [k,) [w8]

Substituting Equation 1 to 3 into Equation 28 ylelds the following equation for the deflections
1)
[8] {x} + [a] {P} + [bg] {8} = {8} (34)

*This is the result obtained in Reference 5. The erroneous application of Castigliano’s
First Theorem in Reference 5 achieved the correct result because the deflections were
treated as independent variables during the partial differentiation of the strain energy with
respect to the external loads,

360



AFFDL-TR-66~80

where

[ = ([msel Ty )+ [M/PT Tiiio Il + ([Pl iy
s el T, ) [yl + [weT fie,) D]

b = (A fic, ] + ImgeT iy, 1y Bay] + Byl iy, |
» /T Tio ) Iy3) + Ere] [, J ]

(35)

(36}

The simultaneous sclution of Ejuations 30 and 34 leads to the deflections and redundants in
terms of the external loading. The relationship between the deflections and the external

loading defines the structural infjluence coefficients.

4 )

where
(o] = ¢[1]-[b]1i' [o]
o] = [o,] - (6] [a]' [£]
[b] = [bg] - [e]" [ [c]

We may define a unit final redundant load matrix by writing

(- Dl )

where

[Pl = - [a] «[e]+[c] [d] )

(37

{38}

(39)

{40)

(a1

(42)

Substituting Equations 37 and 41 into Equations 1 to 3 leads to a series of unit final internal

reaction matrices.

{Mi} = [m,7] {P}
{Mo} [m,¢/P] { P}
¢ - ) B

u

1

where

Merel = Pl + [mx[xesp] + [Ms8][a]
My el + [,/ [xp/P] + [Mor8][a]
[vs3) + [wx] [xf/P] + [w8][a]

|MyeP]

i
v,7P]
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The last consideration of this section is buckling of the structure. The combination of
transverse and axial loadings on a beam-column frequently will produce excessive stresses
and consequent failure before buckling cccurs, Neverthelesd, the external loading that makes
the matrix {[1j ~[b,]} singular is a useful reiference in estimating margins of stability for
subcritical loadings and, therefore, is defined as the buckling loading. The matrix[b] is a
function of the external loading {Q} If we assume each of the loadd Q to be increased by the
same scale factor c, then the buckling loadingis found from the lowest value of ¢ for which the
matrix ([1]-[b,]) becomes singular, Letting ¢., be this critical value, we define the buckling

loading by
{ch} = Cer {Q} (49)

where c., is found from the dominant eigénvalue A of the matrix [br]; i.e., if we write the
eigenvalue problem in canonical form

Y {8} = [b,] {8} (50)

Coy = 2N (51

then

SOLUTION OF THE NONLINEAR CASE

A linear solution for the redundant beam-column system was obtained in the preceding
Bection because it was assumed that the first terms of Equations 4 to 6 were sufficient to
account for beam-column effects. In the most general case, beam-column effects cause
interaction between the external loading and the redundants through the deflections, and all
terms in Equations 4 to 6 are present. We now consider the approximate solution to this
general nonlinear problem

For the purpose of an approximate sclution, Equations 37, 38, 41, and 42 can be combined to

o s} = ([1]- [b] ' Lor] {p} (52)
{x} - [A]-l( [B]{P} +[c] {8}) (53)

If we denote the deflections without beam-column effects by

{8}| = [o,] {P} (54)

and the redundantis without beam~column effects by

{x}! = - [a]"[g] {P} (55)

{8} = -] {s}, (56)
{x} {x}l - [a]? [] {8} (57)

The matrices[b,] and [C], defined in Equations 40 and 33, respectively, are functions of the
unknown redundants through Equations 4 to 6, and the possibility of an iterative solution to
Equations 56 and 57 becomes evident at this point, Although the choice of an iterative solution

then Equations 52 and 53 become
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is not unique, the following recurrence scheme appears likely to yield a uniform monotonic
convergence that will generally be stable,
(1) - [b,], 7" {8}[ (58)

).
{x}w = {x}! - [a]" [c], {S}n (59)

where[ b, ], and [C], are based on{X}..

The rate of convergence of the iterative sequence can be improved by using Aitken’s
acceleration procedure to obtain a better approximation to each of the deflections and re-
dundaﬁts. If convergence is proceeding exponentially, the asymptotic value of each element of
the n!® iterated deflection mode is

Bawt = Spo2 (8,51 -8,,_2)2/(8,,-28,1-, + 8,-2) (60)

and the asymptotic value of each of the ot iterated redundants is
Xnat = Xp.2 = (X - xn-Z)a / { Xp=2Xqy + Xp.2) (&l
The extrapolations are made only if all deflactions and all redundants satisfy the conditions
I(S,, -Bn_,)/(Sn_,-Sn_z)|<r<i (62)
l(x,, - Xpep ) 4 ( Xpey= xn_z)’ <r<| (63)

in order to maintain uniform convergence. An optimum convergence rate has been observed
(Reference 8) withthe ratio r about 0.90. Since convergence will not be exactly exponential, the
extrapolated asymptotic deflections and redundants will be only approximate and are used as a
new basis from which to continue the iterative solution of Equations 58 and 59.

The deflections are sufficient to test convergence, If the maximum deflection agrees on two
successive iterations to & given number of significant figures

l%ﬂm-ll<e {64)

(8n~t )mox

and if each element of the normalized deflection mode agrees on two successive iterations to
the same number of decimals ;
8n Sn-l

I(S | <« et

n)max (Sn-l ’mux

then satisfactory convergence has been achieved, Forfive significant figure convergence, € is
equal to 0.5 x 1077

The buckling loading in the nonlinear case can only be defined rigorously in terms of some
strength failure criterion; it cannot be defined by the classical stability criterion because qf_the
excessive stresses and deflections ai loadings closely approaching the classical critical
loauing. However, it muy also be defined gualitatively (although not without some quantitative
meaning) by scme arbitrary maximum deflection criteron, such as the loading at which the
deflections begin to increase rapialy,
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T
]

Example 1. Consider the unilorr Goably redundant frame in fgurs 2, ace assume that
shear and axial dzformaticas may he neglected. Of the various ways ine siructure can be cut
to make it statically determinaie, we seek one thai makes e defiection mode of the cut
structure similar o that of the actual structure in ordar 1o mainiin accuracy throughout the
calculations. We thersiore choose o Xemove the bending restraints at joinis B avd C und the
moments X, and X, become ihe wo redundacts as Baown. Since the puckiing avalysis of
Reference 5 was 10 percent in error with e beam divided into three segments of equal
length we shall incresse the aumber of segments in each mermber 1o 10 hers¥*. Applying the
dumuny loads at the segment end painis as shown will lead to an 18t ordur mutrix of SICs. The
axial load Q) is carvied directly into the horizontal member BC 80 ihal six matrices are
required W deter-mue the SICs and the buckling load:

r IS F o § IS )

Wi /P}‘} s iMD/F’J, 5_""'@’*“}* imamhf, i"_iif%i /8(}}, ond li_m,‘.,'/é‘;{;)“
(Nute: for this configuration the outboard momenis canbe dorived from e Inioara values, so
only the inboard vulues will be sitown) . W denote as oulboarcd the direciion around the frame
away from the pinned base joing, and choose compression on the mgaide of the frame as the
positive moment convention,

FThis T8 Teample & of Heference 1
Prsomething of the sreder of 30 segments would e ceconunendad nocmally in dealing with
practical confivuratous daving viriable siiffnens properiles,
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We begin by deriving the inboard moment matrix for the dummy loads on the statically
determinate structure. Consider the dummy load p,. The reaction at A to p, is 9p, /10 and
the moments below the load become M, =0 and M;, = (9P /10) £/10). Similarly the re-
action at B to é) is p, /10 and the moments above the load become M, = /10) (84/10),
M;, = B, /10) (7 / 10), etc. The load p, causesno moments in member BC. All o% the elements
of the matrix[Mi/P]are derived in this manner and the matrix of order 20 x 18 finally
appears as

R
L.oad ——»

P, P, Py Py Pg Pg Py Pg Py Po Py Pp Pi3 P Pis Plg Pz Ple

Itemn — -
O 0o o ©c 60 0C 00OCGCOO0OOO 0O
@ 9 8 7 6 54 3 2 + 000 c o o o
©) g 16 4210 86 4 2 00 0O0O0O0O0 00
() 714 22181512 9 6 3000 00O0O0O0O0
® 6 2 82020 12 8 4 00 00000 00
O] 5 10 152025 20 510 § 0 0 0 0 0 0 0 0 0O
@ 4 812 86202 1812 6 0 0 00 00 000
3 6 9 1215182 14 7 0000000 00
® 2 4 6 80D I214I1B 8000000000
GOWio0| + 2 34 567 89000000000
D) 0 0000OOGOOOO0OO0OO0DO0O0 00
D) O 000O0DOO OO O 987 6 54 3 2 I
® © 00 0O OO GOT O 8161412108 6 4 2
© 0 00O 0COO OO OO 7 142 18151129 6 3
® © 0 000 O OO O 6 12182 2 612 8 4
(e 0O 0 00 O 0O OO 510152 262 15110 5
@ 0O 0 0O0OOOTO OO OO 4 8 1216224 812 6
o 0 00OOCGO OO O 3 6 9 1215182 14 7
0O 0 00O0O0OOO OO OZ24 6 8101214168
) _ooooooooouz3456739_

‘The outboard matrix is obtained from the above by deleting the top row, shifting each remaining
row upward one row, and adding a row of zeros at the bottom.
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Figure 2. Corner Loaded Redundant Frame

£

We npext derive the inboard moment matrix for the redundants. Consider the dummy
redundant x,. ‘The horizontal reaction at A to x, is x, /£ and the moments in member AR
are M;, =0, My, =(x,/&) (£/10), M;, = (x,/8) (24/10), etc, The reaction at C to x, is also
X, /4 and the moments in BC are M, =%, M, =(x /é) (94/10), M; , = (x, /) (8?/10). etc.
The moments caused by x, are found in the same manner and by noting that it does not affect
AB.
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The matrix[M;/X]of order 20 x 2 finaily appears as

\Lodd !I—-I'"

2
Item -
l® ) o} .‘
® o.l 0
@ |o2 0
@ |o3 0
® |oa o
® |os o
@ 0.6 0
[MIIX] = Z': 2
0.9 o
D) 1.0 0
@ |oo 0.1
@ |os 0.2
0.7 0.3
©® 0.8 0.4
0.5 0.5
@ 0.4 0.8
() 0.3 0.7
© 0.2 0.8
g |o 085 |

The outboard matrix is obtalned from the above by deleting the top row, shifting the remaining
rows upward, and adding the rowL0 1.0Jat the bottom.

The inboard moment matrix for beam-column effects may be written by inspection of
Figure 3 merely by observing the moments caused by the horizontal axial load* Q and the
deflections 8. Noting that the force Qdoes notinduce moments in member AB, we immediately
deduce the following moments in BC: M;,, =0, My, = QB Mj,; = Q3,, . ete.

*This is a typical case of conservative loading, Example 3 illustrates a case of nonconservative
loading. '
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The inboard moment matrix for unit beam-column loading then appears as

[Mi /BQ] z
Deflection —=

N 8555558885885 3355 58 s

2 37456 78 9 161 1234 9%% %

item T
@’_oooooooooooooooooo
@ O 00O0OO0OCO0OCODOOODODOOGOOOO O
® © 00O 0O0OOOOOOOOOGOGOOO0 O
@ © 0 00O OOOCOGOOO OOOOO0O 0 O 0
® 0O 00O 0O O0CODOOOOOOO0UO OO 0 0
® © 00 00O0O0COCDOOOOOOOO O O
@ 0O 00 0C 0O O0CODOOOOOOOOO O O
0O 00O OODOOGO O OO OO OO OGO OO0 0
® 6 000 0 0OO0DOOOUO©OOO0OTO 0O 0 O
@ O 000 O0OO0ODO0OOOOOOOOOOO O
(D) 6 000CO0OOCOOOOOOOO0OO OGO O
@ 0O 000CO0O0OGCOOG I 000O0OOOO O
® 0 00 0O OOOOGO I 006O0UO0GOCO 0
0 0 00O O0DO0DOOO0O I 00GO0GO OO
@® © 0 0O0O0O0OO0OO0ODOOOO0OI!1 0000 0
(] © 000 O00O0O0OOOGOOCO | 000 0
@ © 000 0CO0OO0OO0OODOOOCOO I 00 O
0 000COOOOOO OO O0O0GCG ! 00
O 0 0000 0OO0COOCOOO O O | o
€@ |c 0000000000000 o0 o 1

The outboard matrix is obtained by shifting the rows upward and adding a row of zeros at the
bottom,

For t‘the numerical work, we assume the 1ength-€== 200 in. and the uniform stiffness
E1=10" Ib sq in. The axial load Q is assumed to be 40,000 lb, Utilization of the computer
program of Reference 1 with the foregoing geometric and stiffness data and the moment
matrices results in an 18th order matrix of SICs and the buckling load. The SICs will not be
shown but the 5-5 element is found to be

455 = 0.00139245in./Ib

and the lowest buckling load is
Q., = 68,640 Ib
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Figure 3. Interaction of Loading and Deflections

The exact solution to this problem may be found from well known uniform beam deflection
formulae (Reference 9) and the requirement for continuity of rotation at joint B, The rotation
of joint B in terms of the loading P, on member AB is given by

L d .
Ely = Kk P5"' +k2x|£

where k, = 1/16 and k, = 1/3. The rotation of joint B in terms of the loading on the member
BC is (see Roark Reference 9, Table VI, Case 8 adjusted to have zero slope at one end).

Ely' =-kgX, £
where
kg = (2-2cos pp £ -py, L singey 21/ R sinpy, L - gy deospy L)
and
My = J/Q/EI
Equating the rotations yields
X, = kB L7/ (ky +Kkg)

The deflection under P, is

- 3 2
v5 = P £°748EL + X, £°/16 EI

from which the SIC of control point 5 is

95.5 = ¥5 /Ps

(03/a8ED) [ - 3K/ (k4 Ky 1]
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The condition for buckling is
kp + k3 = ©

For the load Q = 40,000 b, the exact solutions are found to be

G5.5 = 0.00140312 in./(b

and
26.9582 EI/ 42

67,396 Ib

0
"

cr

(The buckling load is found from a numerical solution for the lowest root of the transcendental
equation, k, + k3 = 0). We note that the original assumption of a linear variation in moment
along the length of each element implies a linear deflection curve between control points
when calculating the effect of axial load. This restraint in treating beam-~column effects
results in an effective increase in stiffness. Hence, the calculated SICs are lower and the

Example 2, Reconsider the doubly redundant frame of Figure 2, but with the horizontal
load Q applied at the midpoint of the vertical member AB as shown in Figure 4. This example
illustrates the interaction between external ioading and internal redundants when the loading
is sufficiently large that beam-column effects must be accounted for. For this general non-
linear beam~column problem, n matrices are required _to determine the SICs and the
buckling load:[M-l ?fl, m, /xT, [ﬁi s8a], [m, 78X, 1, [‘f’rsal 78x 2)] ,and the corresponding out-
).

board values (which are again derived from theé inboard value

P

Plo 18
B f* Pc‘> o —
NS 2
Pq B xl\ HEM @ ﬁ
1"em (10) M
. ., OUTBOARD Y
PL - .,/*ITEM ®
TJ

- A —
Figure 4, Redundant Frame With Intermediate Member Loading
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By making the same choice of redundants and considering the same 18 virtual loads as in
Example 1, the matrices [Mi/P], [MQ/P], Mi/X], and [MQ/X remain the same. The inboard
moment matrices for beam-column effects may be written by considering the reactions to the
load Q and the redundants X, and X,, and observing Figures 5a, 5b and 5¢c. A comparison of
Figure H5a with Figure 3 shows that the elements of the matrices[M;/SQ]and [MO/SQ]have
1/2 of the values of the corresponding matrices in Example 1, because only half of the load Q
is reacted by the member BC in the present case. These two matrices, therefore, need not be
shown. From Figure 5b it is seen that the interaction between the first redundant and the _d%-
flections induces moments in both members. We observe the following moments in AB: My =%

Mo = -X8 74, Mz =-X8;/L, etc., and the moments in BC are: M = O, M;, = -% 8,9/ L,
Mz = -X| 8! \/ £, ete. The inboard moment matrix for the first redundant appears as

[Mi’sxt] :

Deflection —w=

N 35588558583 5533885
‘@ [ o 0 0 00 0O0O0OOG ®OQOO0 O
@ |- 0 0000O0OOCOOOO0OOOO0O
@ |o-1 0o0o0o0000000D0O0D0O0O00O
@ |0 o-1 0 0o 0000000000000
@ |o oo-t c0oo0o0o0o000000000
@® |oocoo- 0000000000000
@ |0 0oo0o0o0-1 00«¢o0o000000O0O00
0 00 0O0O- 00O0OOO0©OOO0 00
3 fo0oo0o0000- 0000000000
0O 000 O0O0OO O-I 00O0O0COO0OO0O00D
@umoooo © 0 000O0O® OGO OOOTDOOO
@ |ooo0oo000000- 00000000
@ |0 oo0o0000000-1 0000CO0C0C0
0O 0 00O0OCOOOOO= 000000
@ |0 o0oo0co0o00000000- 00000
© 0000 O0OO0OOOO®OUOO- 0000
@ |oooo0oo0000000000- 000
© 00 00CO0OGOGOGOOOOOO= 00
© 0 000O0OOOOOO OO OOO O
@ [0 0000 00000000000 0=

From Figure 5c¢, it is seen that interaction between the second redundant and the deflections
only induces moments in member AB, The moments are: M =0, My=X, SI 71,
Mz = X580,/ 4 etc.,
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Figure 5. Interaction of Externa} Loading, Redundants, and Deflections
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and the inboard moment matrix for the second redundant appears as

Deflection —»

\ _§ 5 & §

Item
@ o
l@ 1
® o
@ o
® 0
®) 0
@ 0
o
® 0
(/2) |o
O o
®) 0
®) 0
o
O] o
0
@ o
o
o
(29 0

0

O 0 O 0 0O 0 O C 0O 0 0 0 0 0 C 0 O

c Qo o

cC 0 Q0 0 O 00 0 0 © 0O 0 O C o ©

O O o

O 0 0O O 00 O 0 0 O 0 0o O o

)

o 0 O O o

O 0 oo OO0 O O O O 0O o ¢ o

[Mi/sz]z

85 37 83 89 8|o 8:: 8I28I3 8|4 8:5 Snssrr Sus
ooooooooooooo“
O 00O OO OCOOUOOO 0 0
O 0 00O OO OO O OO O O
o 0 0600000 0 O0O0UO0O
0 000 O OO OCO0OGUOOOD
0O 0O 0O 0O OO O O O 0 O 0O
Il 0 00 0O OO C O O OO0 O
0 I 00O OOOCOO OO O0 0
© 01 00 0 0 OC OO O O
o 00 I O 00O OCOOO OO
0O 00 00O O OCOOTU OCGO OO O
0O 0OOOO OO0COO OO OO0 0
© 06 0O OO O 0 O O OO O
0O 000 0O 0O 00O OOUOTO OO
O 0000 OO 0O O 0 OO 0
0 000 0O 0 OO O O O0O0 ©
0 0O 000 C O G 0 OO O0QO
0O 00 0O 00O 00 00 0O O
0O 00 00O 0O O0OO0OO0OO00O
0O 000 OO 0 OO 0O 0O

The outboard moment matrices for redundant beam-column effects are derived from the
inboard matrices by shifting the rows upward and adding a row of zeros at the bottom.

The computer results for as s and the buckling load Q., are shown in Figures 6 and 7,
respectively, for a number of loading conditions. For loading @ = 45,000 lb, the following values

were found,

Qy-5

QCI”

1]

0.0020036 in./Ib

85,223 Ib

Since Q@ € Q, the buckling load must exceed 45,000 lb. The extrapoiation for the buckling load
is discussed at the end of this section.

The exact solution to this problem begins with the requirement for continuity of rotation at

the frame corner.
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Variation of Largest Influence Coefficient With Applied Load
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Figure 7. Variation of Classical Buckling 1oad with Applied Load
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The first redundant is proportional to the external load

X| = -KQE

where the coefficient K will be found from the condition of rotational continuity. The second
redundant is related to the first through the carry-over factor C

xa = —CXI

All of the reactions onthe frame canbe expressed in terms of the coefficients K and C as shown
in Figure 8. Having the frame reactions permits utilizing the single spar. beam~column slope
formulae to determine the coefficient K, The corner joint rotation in terms of the loading on
the vertical member may be written (see Roark Reference 9, Table VI, Cases 3 and 8)

Ely' = k Qf%+ KyX, 4
iil#C]KQ

Q |--=—Qq(1/2 +K)
. )
\-—\x.n&ol Xz =~ CX, : CxQd
Q
D
t:-i-—-—otllz ~ K}
{1 +CIxa
Figure 8. Frame Reactions
where
k, = [1-cos (;.r.,tfznzmv!'}a costp.v.l/:Z)]
ko = (sln,u.vl—p.,‘,ﬂ cos i @)/ (y-vf)a sinp.v!
and

p, = JTI+C) KQ/EL

The rotation in terms of loading on the horizontal member is {see Roark Reference 9,
Table VI, Case 8 adjusted to have zero slope at one end)
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Ely' = -ky X £
where

ky = {2-2 cos,u.h,l - ppdsinpt) / Hnd (sinphj -y.'hﬂ cosp.hﬂ )

TR J1Z + K)Q/EL

The carry~over factor is

c = (upk-sinupd) 7 (singd -k cos p £)

The continuity of rotation leads to the coefficient K
K = Isll(k2+ k3)
The soiution of the foregoing equations for a given value of Q requires a trial-and-error

technique. The following sequence was found to achieve a reasonably rapid convergence until
the buckling load was approached:

(1) A value of K was estimated beginning with the value K = 3/28 for negligible beam-column
effects.

(2) The following quantities were calculated in order:

(e}  py
(b) kg and C
() py

{(d) k, and kp

(3) The original estimate of K was checked by calculating K =k, /(k, + k). L it was not
sufficiently close, the sequence was repeated using the check value as a new estimate
until satisfactory accuracy was obtained. :

A converged value of K permits calculation of the frame deflections. In particular, the
structural influence coefficient under the external load is given by

a5 g = ( £/E1) { [ tan(y £/2} 'HB/Z(;LV!)E']
- K [sin (u r2) /sinipd) - r/z] / (p.vmz}

For the load @ = 45,000 ib the converged iterative “‘exact” solution results in
K = 0.12935

C = 1.17725

and the influence coefficient of the loaded point is
g5 = 0.0020523 in./Ib
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The computer calculation of &5 s has an error of 2.4 percent for this particular loading,
Calculations were also carried out for a number of additional loadings in Reference 1. The
inability to obtain convergence in the region of Q = 46,500 1b suggests that this load can
reasonably be called the buckling load, inasmuch as the definition of the buckling load in this
case is somewhat arbitrary, as has been discussed in the preceding section.

The computer solutions, as shown in Figures 6 and 7, lead to an estimate of buckling load
of approximately 46,900 1b. In Figure 7, extrapolation of the (Q, Q¢ ) curve to obtain an
intersection with the true buckling line Q= Qer does not appear to be reliable with a sufficient
degree of accuracy. However, the value estimated from the curves is consistent with the
arbitrary definition of buckling in the general case, and provides an adequate measure of the
elastic stability of the frame.

Example 3. A uniform cantilevered column loaded transversely by 10 virtual loads and
axially by a tangential load at the free end is shown in Figure 9 in its deflected position. We
consider the determination of the buckling load for this non-conservative loading. It is first
necessary to find the static SICs and then to carry out a vibration analysis to determine the
axial load that causes coalescence of the first two natural frequencies. The dynamic analysis
for the non-conservative buckling load was first given by Beck (Reference 10).

ARRRRLRN

084t

Figure 8. Column Subjected to Non-Conservative Loading

The matrix of inboard moments caused by the 10 virtual loads is easily written by inspection
of Figure 9. Defining a positive moment as one that causes compression on the upper side, the

matrix is [Mi /P] :

Load —»

B P Py Py P5 Pg R, By Py Py

Item

¢ 0] [\ 2 3 4 5 6 7 8 9 I0]
@ o | 34 56 7 8 9
©) 00 | 2 3 45686 7 8
@ ©C 0 01 2 3 4 56 7
Bd/ajo 0o 0 01 2 3 4 5 6
® 0O 0000 (2 3 4 5
@ 0O 000 OO | 2 3 4
0000 O©O0OOI1 2 3
® O 0 00O 0 0 0O |2
© 0 0 0 0 0 0 0 0 |J
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The outboard moment matrix follows by deleting the top row, shifting the remaining rows
upward and adding a row of zeros at the bottom.

The inboard moment matrix for beam-column effects may also be derived from Figure 9
but not quite so easily. We note that in general, the inboard moment from the end load is

Mien = -Q[Bn-Slo -y (1)]

The slope at the free end, y'(£), can be expressed in terms of the deflections by numerical
differentiation formulas. Taking the quadratic formula of Milne {Reference 11) for equally
spaced points we have :

y(ly = (2/84)(3g- 48 + 390)

and the elements of the rnatrix[Mi/ 3Q]can be calculated to the accuracy of parabolic dif-
ferentiation. The matrix becomes

[M‘ISQ] s

Deflection —»

”em\ 8 8 8 3 38 3 3, 8 8 By
l O] (6 o o o o o o0 -50 200 140 |
@ -0 0 0 o0 0 0 =-45 180 -125
® 6 -0 0 ©o © ©0 0 -40 160 =10
@ 0 0 -0 0 0 0 0 -35 140-95
® o © 0 -0 0o 0 0 =30 20 -80
® o 0 O O -9 O 0 -25 00 -85
@ o o o ©0 © -0 O -20 80 -850
o o o ©0 ©0 O -0 -5 60 -3%
O] ©o 0 o 0 O ©0 0 -20 40 -20

© o o o o o o o -05 1O 03]

Again the outboard moment matrix follows by shifting the rows upward and adding a row of
zeros at the bottom. '

The foregoing matrices are sufficient to obtain the SICs from the computer program.
Thirteen sets of SICs were obtained for the values of Qfesw2ELl = 0, 05, 10, 1.5, 2.0,
2.02, 2.04, 2.06, 2.08, 2.09, 2.10, 2.l1, and 2.12. A typical resultfor qgé/r2€l = 1.0 illus-
trates the nonsymmetry of the matrices,
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[a] = ¥ED x 1073

|-.0.3"4.’8 0.788 1.172 1441 L.57I (.548 L1375 i.069 0.657 0.1 78-
0.820 0.254 4.185 5.420 6.128 €.241) 5.7499 4,898 3.180 1.332
L.312 0.4496 8168 (1.240 13,222 13.920 13.267 11.323 8.249 4.303
[.804 0,638 12.311 18027 22,157 24135 23.770 21.097 i6. 296 9.758
2,296 0.830 16.457 24,979 32060 36,193 36.8I10 33.B54 27,464 18.1i4
2.787 1.022 20.602 31.931 42,128 49.2i8 51.692 49148 41.592 29.521
3.279 .215 29.747 36.883 52,195 62.407 671542 66.284 %0.235 43822
377 1,408 28.892 48.035 €2,262 75596 B3556 64.388 TE.699 60582
4.263 1.598 33037 52,787 72330 68.785 99570 102.8585 96.118 79.128

__4. 755 i.790 37.183 0§9.739 B82.397 101,974 115584 120.923 {15.600 98.812 J

The vibration analysis is carried out by using the computer program for flutter analysis of
Reference 12 because the natural frequencies become complex conjugates as the frequency
coalescence condition is passed with increasing end load. The eigenvalue subprogram is based
on a variation of the power method capable of finding complex conjugate roots and is described
in Appendix A of Reference 12, A coupled mass matrix may be used to increase the accuracy
of the vibration analysis of the 10~degree-of-freedom system, The derivation of a coupled mass
matrix is discussed in Appendix B of Reference 12. If the distributed mass is lumped at
20 points, 10 at the control points for the SICs, and 10 half way between the control points, and
if linear interpolation between control points is assumed, then the mass matrix appears as

[M] -

[150 028 ¢ o o o
025 150025 0 0 o
0 025 150 a2 0 O
0O 025 150 025 O
0O 0 025 (5 025 ©
C O 025 150 Q28 0O
© 0 025 130 028 O
6 0 0 02 150 025 ©

© 0 0 0 025 1.50 028
© 0 o 0 o o025 078

O O o O
0 C 0 o ©

{md720)

c O O O 0 O ©
O O O o o
©C 0O O o
o QO 0 0 © ©
o 0 O © 0o 0 o

where M now denotes the elements of the mass matrix and m denotes the distribution mass per
unit beam length,

The results of the vibration analysis are summarized in Table 1. By extrapolating the
imaginary parts of the post-buckling frequencies (the square of the imaginary part is ap-
proximately linear) back to the coalescence point, the buckling load is estimated to be.
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Qf/m? EI = 2.082 and is 3.7 percent higherthan the value 2.008 given by Timoshenko and Gere
{Reference 13).*

Table 1, Comparison of Computed and Exact** Frequencies

al2/7w2E1 w, 2/ m/ET wa.QaJmTEI-
Computed I Exact| Computed Exact
0 3.510 3.49 22.124 21.8
0.5 4.221 5.03 20.636 20.2
1.0 5.173 5.41 1 8.921 (7.9
1.5 6.565 6.69 [ 6.786 i5.9
2.0 9.369 9.67 (3.268 9.97
2.02 9.608 13.002
2.04 9.892 12.689
2.06 10.262 12.293
2.08 10.941 11.585
2.09 11.305 + {3425 11.305 - i3.425
2.10 1,360 + i%. 20l 11,360 - i5.201
2.1 IL4l6 + i6.533 i1.416 -i6,533
2.12 [1473 + i7.654 11.473 - i7.654

CONCLUDING REMARKS

A matrix solution by a Force Method for structural analysis of an elastic redundant beam-
column system having variable bending and shear stiffnesses has been presented. The
development leads to the SICs, the internal load distribution, and critical buckling loads for a
system subjected to either conservative or nonconservative beam-column loading. The
nonlinear problem that arises when the external loading, internal redundants, and deflections
all interact because of beam-column effects has been solved by a reasonably rapidly con-
vergent iterative procedure. Three example problems have been solved to illustrate the new
features of the method,

The present development has only considered the effects of temperature o the extent that
the material properties of each structural element are determined by the temperature. No
thermally induced stresses have been considered. However, the basis for an extension of the
Ogness method for the general solution of the thermoelastic deflection, internal load, and
stability problems is provided in the present extension and the earlier extension of Reference
4, The general thermoelastic problem will be the subject of a later investigation,

The SICs derived here can be used directly in vibration and flutter analyses of systems
restrained in space as has been illustrated in the third example. It is not apparent, however,
that the SICs, if beam-column effects are present, can be used directly in the analysis of
systems free in space by collocation methods suchas Reference 12 without some meodification

*The buckling load Q£7w°El = 2.031 is given by Beck Reference 10, but the later result of
Reference 13 appears to have been based on a more refined calculation.

*xDerived from Table 2~15 of Reference 13.
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