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ABSTRACT: The problem of determining the motion of distributed parameter dyna-
mical systems governed by partial differential equations can often be reduced to that
of solving a denumerably infinite system of ordinary differential equations. Although
approximate solutions can be obtained by using various closure techniques, their use-
fulness depends to a large extent on whether error estimates can be obtained. In this
section, explicit estimates for the truncation errors associated with particular classes
of infinite systems of first and second order linear ordinary differential equations are
obtained. The results are applied to a system arising in a distributed parameter con-
trol process.
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6.1 INTRODUCTION

6.2

In many distributed parameter dynamical systems whose motion is describable
by a set of partial differential equations, it is often possible to separate the
equations into spatial-dependent and time-dependent parts. The latter fakes on
the form of a denumerably infinite system of ordinary differential equations,
Although approximate solutions to these equations can be obtained by using ap-
propriate closure techniques, their usefulness depends to a large exent on
whether estimates on the error can be obtained.

This section is concerned with establishing explicit estimates for the truncation
errors associated with particular classes of denumerably infinite systems of
linear ordinary differential equations. In the subsequent development, the pro-~
cess of separating the time-dependent part from a given partial differential equa-
tion into the form of an infinite system of ordinary differential equations will be
illustrated by specific examples. This will be followed by a formal mathematical
derivation of the error estimates for the particular classes of equations under
consideration. The application of the main results will be illustrated by a
specific example,

EXAMPLES OF INFINITE SYSTEMS

For many partial differential equations arising from physical problems, the
solutions may be expressed in the form of an infinite series of products of
separable functions of time and spatial coordinates. The sequence of spatially
dependent functions is generally taken to be any convenient complete set of
orthogonal functions which satisfy the given boundary conditions. For example,
in aeroelastic systems one may take these functions to be the eigenfunctions
corresponding to the elastic system without aerodynamic loading.

To illustrate the mathematical details involved in deriving an infinite aystem of
ordinary differential equations from a given partial differential equation, we
shall consider two specific systems which arise in problems of automatic con-
trol and elasticity. One of these examples will also be used to illustrate the
applications of the mmain results.

Example 1:
Consider a simple linear diffusion equation
2
auft, x) - 8 uft,x) (6.2-1)
bt axz o0

defined on a spatial domain (0,1) , with initial and boundary conditions given
by:
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u(0,x) = uo

1 (6.2-2)
ut,0) = 0 , ult,1) = I gl ult, £ ) dg
Q

In the physical situation, the above equations describe the dynamic behavior of
a temperature regulator for a thick slab, in which the temperature at the sur-
face x = 1 is made to be proportional to a spatially weighted average of the
instantaneous temperature distribution of the slab,

First, let us introduce a transformation:

1
wit,x) = ut,x) - x f g(Eult,£) dt (6.2-3)
[+ ]
which transforms (6.2-1) and (6.2-~2) into the form:
2 1 2
hx) . Fwhx) xf g(y) SHLEL o (6.2-1')
ax a¢
[+]
and
1
wo,x) = u(x) -xJ’ B(E) uy(€)
o (6.2-2"

ut,0) = wit,1) = 0

Assume the solutions to Eqs. (6.2-1") and (6. 2-2') can be expressed in the

form:
[+ ]

wit,x) = 2 a_(t) sin nrx. (6. 2-4)
n=1

Substituting (6.2-4) into (6.2-~1") and making use of the orthogonality property
of { sinnwx} lead to the following infinite system of ordinary differential
equations for an(t) :

da_{t) 0 n_2
n 22 n - (-1) 'm

at + (nx + 2nvr(-1) gn) an(t) 2x m§1 o gmam(t)

mwvn
n= 1,2, .., (6. 2-5)
with initial conditions
n »
- -1 H = 1.2, ... 6. 2-
an((_)) “o(n) + gn '1 u, a=1,2 (6.2-6)
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.1
g - g(¢) sin muf dé
o
1 .
uo(n) = (u)sinnw{ di (6.2-7)
J [4]
. -
u, = ) u (€) di
o

(o)

In order to obtain the solution to the original equations, {6.2-1) and (6.2-2), it
is necessary to solve (6.2-3) for u interms of w ., This can be accomplished
by first differentiating (6.2-~3) with respect to x and substituting the resuilts
into (6.2-3) to obtain a differential equation relating u and w:

d -1 d -1
ix {(x “uit,x) = dx (x “u(t,x)) (6.2-8)
1t follows that if J‘ 1 ¢g(t) d¢ » 1, then u can be expressed in the form:
)

ult,x) = wit,x) + (1-K) 1xvit) (6.2-9)

where
1

vty = J' gl) wit,£) de
o

) (6.2-10)

K = f £g() dt

o
Example 2:

A simply supported elastic panel with finite chord, infinite span, and uniform
thickness will be considered here. It is assumed that the equation of motion for
this panel has the form:

4
pluit,x) _ x| P .

2 4 L

at ox

gu(t,x) du(t,x)
at ! 9x

(6.2-11)

defined on a spatial domain (0, 1), with initial and boundary conditions given by
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guiv; A) - uo(x)

u{0,x) = uo(x) * ’

ot t=0

5 9 (6.2-12)
u(t,O) - ut, 1) = _a_lLtzJ}.)_ _a—‘lﬁzlil. = (),

ox x=0 ox Xxm=1

The funrtion f represents a distributed external load. For thepresent dis-
cussior, f is taken to be of the form:

1 M 1 M
f = P qjsinjrg ut,£)dt + > p, sinjnt LU dt
j ot
j=1 j=1
0 1]
(6.2-13)
Similar to Example 1, we assume a solution of the form:
[+ o]
uit,x) = 2 b_(t) sin nrx (6.2-14)

n=el

A straightforward computation leads to the following infinite system of ordinary
differential equations for bn(t) :

a® (t) db_(t) M db (t)
— o 2y —2— 4 abt)y= Y 2_ . a b(t)]
2 n dt nn Tam dt nm n
dt m=1
m#*n
(6.2-15)
with initial conditions:
1
bn(O) = bo(n) = So uo(g) gino xé d&
| . . (6.2-16)
b0) = by L G (§) sinnm df
where
2q 6
-p 6 /nx for n=M 114-.nr4 - e forn =M
nn oy
'Y = ’ a =
n n
0 for n> M n‘jtw4 forn >M
2p & 2q ¢
y - —mn , o = —2B (6.2-17)
nm nx nm nr

1 for n odd
an=§

0 for n even
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In order to ensure physical realism for the initial and boundary value prob-
lem, we shall restrict the initial data to that class of functions corresponding
to finite total (kinetic plus strain) energy, i.e.:

1. 2 Bzui {x) 2
j. [u (x) + ( ) ]dx < + ®© (6.2~18)
0 2
o ax

The above condition implies that bo @) and i’o @)’ n=1,2, ... must satisfy
the following conditions:

~ 442 —~ 2

2 nrb <+ , Xb < + o, (6.2-19)

o(n) o(n)

n=1 n=1

ERROR ESTIMATES

In this section, estimates for truncation errors for both first and second order
systems will be derived.

6.3.1 First Order System

For convenience, the following notation will be adopted: Let V(t) = (vl(t) .vz(t) sevs)

be any sequence of functions defined for 0 =t = T, We set

o0 N 00
ver|® = T Vi s verly =~ £ Ve s veli = T Yo
i=1 i=1 i=N+1
(6.3-1)

Further notation will be introduced as required, and will be signalled by (*) in
the equation number.

Let there be given a denumerably infinite system of first order ordinary differ-
ential equations of the form:

dx_(t) °°
~ +oax(t) = m§1 a X () ; n=1,2,... (6.3-2)
m

where a and anm are constants. Let the solution to (6.3-2} corresponding to
initial condition X(0) = (xo(l)' xo(Z)' ...) be denoted by X(t)= (xl(t),xz(t) sess)e
Also, let YN(t) - (yN (1)(12). ceey yN(N)(t)) be a solution to the truncated system
corresponding to (6.3-2) :
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dy. .. (t)
N(n) -
dt * A YNm® E L' Nm)® ; a = 1,2,...,N
men (6.3-2")
with initial condition YN(O) = (xo ' X (N)) . The problem is to derive an

estimate for the error corresponding to the difference between the solutions of
(6.3-2) and (6.3-3); f.e.,

xn(t)-yN(n)(t) for 1=n=N
E(t) = (el(t).eztt)....) where en(t) =
xn(t) for n> N

(6.3-3)

For the case where the coefficient matrix is a bounded linear operator, the
above problem is trivial since the fundamental matrix has the usual exponential
form. For the case where the coefficient matrix is unbounded, Lewisl and
Bellman? have obtained results for certain special forms of the coefficient
matrix. Here, a more general class of equations having unbounded coefficient
matrices will be considered.

Theorem 1: If the initial condition X(0) and the coefficients {a } and {an}
of (6.3-2) satisfy:

o Ixo)] < =,
(ii) Min {an} =k > -w, (6.3-4 %)
(iid) [E a’ ]1/2_A < o,

n,m=1 nm

n»m

then the error satisfies the estimate:

[E@)] = K(N,t) exp(A -k ) t (6.3-5)
where
K(N,t) = "X(O)H_N + A_NHX(O)ﬂt (6.3-6)
and
(5 5a]”
A= a (6.3-7%)
-N n=N+1 m=] nm
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Proof: We first obtain an estimate for || Yo it) "N' In view of (6.3-2"), each

component of YN(t) satisfies an integral e quation
t N

Ynm)t) = ePea b x .+ J’ | (-2 {t=T)) m§1 Ny 747

¥R (6.3-8)

A straightforward computation using Minkowski's inequalities for sums and
integrals leads to

X 0 1/2
ﬂYN(t)]]Ns [Ei exp(-2a t)X ]
t ( N 2,1/2
+ I {E exp(-2an(t-’l'))( P a_ N(m) )) } dT
o {n=1 m=1

ot
m=n (6.3-9)

Extracting an exponential term from the right-hand side of {6.3-9) and applying

Schwarz' inequality, we have
t

gt = expi-kyt) (llxm)j]N + J’

AT (M exp(kN'T)dT)

{6.3-10)
where
N 2 1/2
k =, Min {a } , A = >, a (6.3-11%)
N n<N n N [n,m=1 nm
n*¥m

Applying Gronwall's lernma3 to (6.3-10) gives the desired estimate for YN(t) :

"YN(t)ﬂN = I[X(O)I[N exp(A-ko) t (6.3-12)

We shall now proceed to prove the theorem. Assuming that X(t) is a solution
to (6.3~2), the components of E(t) satisfy the following integral equation:

t 00

j exp(-a (t-’r))( 2 s e (T)) dT ; for n =< N

o n m=1 nm m

mwn
en(t) =
exp(=a,t)% n)
t . 2 N
+ fo exp(-a, (t-T)) (n§1 &™) ¥ mgl anmyN(m)(T)) dr

m»n

for n > N (6.3-13)
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By a series of manipulations identical to those used in deriving (6.3-10), we

have
t

[E®) | = expi-k_t) |X©)||_ + fo A_p ¥ (T | yexpl-ky(t-T) ) dT

t
+ J' A|[E(T) ] exp(-k  (t=T)dT (6.3-14)
0

where
kK . = Min {a } (6.3-15%)
-N n>N 1
Using (6.3-12) to eliminate | Y () HN from (6.3-14) and applying a slightly

modified form of Gronwall's lemma (see Appendix 1) lead to the desired
estimate (6.3-5). The convergence of K(N,t)tozeroas N - % jganim-
mediate consequerce of conditions (i) and (iii) in the theorem. Hence, the
proof is complete.

Remark 1: Conditions (i)-(iii) in Theorem 1 are sufficient to ensure existence
and uniqueness of solutions to (6.3-2), since we may replace kN by k‘m .
Ay by A, and |x¢0) ||N by J|X(0)| in inequality (6.3-10) so that (6.3-12)
becomes

Iyl = 1XO) ] expa-k)t (6.3-16)
and the right-hand side of (6.3-16) is independent of N. It is now a straight-
forward but tedious argument to show that {YN} forms a convergent sequence,
and that the limit function satisfies {6.3-2). Also, note that the solution X(t)
satisfies the estimate (6.3-16).

Remark 2: Error estimates for a non-homogeneous system may be derived

in a similar manner. Here, it 18 necessary to assume that the non-homogeneous
terms satisfy a boundedness condition similar to condition (iii) of Theorem 1.
For example, if a term f (t) is introduced in each equation of (6.3-2), thena
condition of the form

N 2 1/2

[E n(t)] = Fy<F < © forall N (6.3-17)
n=1

is needed.

In this case, (6.3-12) becomes

115



L

Iy® iy = {uxco)uN - |

The coefficient K(N,t) in the error estimate will contain two additional terms,
and will tend to zeroas N - ® for t ¢ [0,T].

FN exp(-(AN—l&q) T)dT } exp(AN-kN)t .

Remark 3: The form of the coefficient corresponding to K(N,t) obtained
from applying Gronwall's modified lemma to (6.3~14) is considerably more
complex than K(N,t) as given by (6.3-6). If we set kN =k, for Nz No’

then the error estimate for N = No takes on the form:
2)

R_-R
2 1
IE®) | = { IX©) |_\AR, + exp(-C.t)) + A A L | X(0 )"N( cc

- ~E
Ay IIX(O)IINRICI} exp(A-k,) t (6.3-5"
where
C, = A+k ok, . C, = A-AL , Cy, = A-k, .
R. = ¢ 1a- («<C.t)), R, = c'1(1- (-C.t

It can be shown that the {...} term in (6.3-5") is bounded above by K(N,t).

Remark 4: If (6.3-2) is derived from a partial differential equation using the
approach discussed in Section 6.2, then it can be readily shown by using
Parseval's formula that (6.3-5) corresponds to a L2 type error estimate for

the approximate solution to the original partial differential equation.

6.3.2 Second Order System

The approach used in the previous section can be used to derive error estimates
for an infinite system of second order ordinary differential equations.

Consider the system

2 o0
d"x_(t) dx_(t) dx_(t)
n n m
——— 20 + anxn(t) = Z (cnm —_—— +a x {t

dtz n dt m=1 dt nm m

H n= 1.2..-9 (6.3-18)

withe =a = 0 and initial conditions
nn no

116



dx (t)

xn(O) = xo(n) ' at n=1,2,... (6.3-19)

t=0 ~ *o(n)

and the corresponding truncated system:

2
dy (t) dy (t)
——Nn) ~N@)

2 2, T * A YNm®

dt
N dy (t)
N(m)
n:E:l (cnm dt + amy N(m)(t))
; n=1,...,N (6.3-18"
withc =a =0 and initial conditions
nn nn
dy,. . .(t)
- _—N{n) - -
yN(n)(o) xo(n) ! dt t=0 xo(n)
; n=1,...,N (6.3-19")

Each component xn(t) of the solution X(t) of (6.3-18) satiafies an integral

oequation of the form:

x (t) = exp(-c_t) (%‘”"o(n) * Pn‘”"‘o(n))

t ad dx (T)
= f exp(-c_(t-T)Hp, (t-T) [ Z (cnm—a:,-—— + anmxm("'))]d"'
o m=1
(6.3-20)

where

p,(t) = A Simh At , q () =cAT Sinhat + Cosh At
for 1i-ci-an> 0

pt) = AL SinAt . q(8)=c A SinAt+ Cos At
for 1: = an-c: > 0

pn(t) =t ' qn(t) = cnt +1 for & = ci .

117



The solutions to (6.3-18'") satisfy a similar integral equation with the upper
summation limits replaced by N.

Using the notations given in (6.3-1) and (6.3-4) and Appendix 2, an error
estimate for the solutions of (6.3-18") can be summarized in the following

theorem:
Theorem 2: Let X(i) = (xl(t),xz(t),...) and YN(t) = (yN(l)(t) ,

YN(Z) 14 JRP ¥n ) (t)) be solutions of (6.3-18) and (6.3-18") respectively.

If the initial conditions and coefficients of {6.3~18) satisfy:

(1) Ix@] < » . |x@f <
(ii) a = -r, >-% |cn| <-r, < o,
{iil) A < o C ¢ o, M(T) < o ,

where T, and rc are posgitive constants; then the error E(t) = (el(t) ’ ez(t), -

defined by (6.3-3) satisfies an estimate of the form:

1E® ], o = I;(N,T) exp ;:(N, Tt for t [0, T] (6.3~21)
where [E@) , ¢ 18 defined by

IE0 0o = AlE®] + c %‘9" , (6.3-22%
and

K(N,T) = (AP() + CP_ (D) -k
KN, T) = AQ_\(T) || X(O) | _y + CM_(T) + (AP_(T) + CP_(T) .
{Ix@|_y+a_y A'N1+ C_ NcI;B(t + %(ANPN(T)
+ C P ™)) K (N, T}
K (N,T) = A QDX + CM(T) + (AP (T)
(6.3-23)

+ CP(M [[X00) |

Proof: Each component of E(t) satisfies an integral equation of the form:
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for n =N
t

. » A
J. exp(-c_({t-T)p (t-T) l n§1 (c.,m atr  ta e (M ) ]d’f
e ) =
SP-e )%, * Pl ) + [ emi-o - Thp t-T).

o
{6.3-24)
o0
(2 ats® o)
nm ar nrn m
m=]
N d}'N(nl(T)
D (cnm T N li111[113"1~I(:1)‘T)) a7
m=1
for n > N
It follows that
IE®) ] = expi-k ) {Q_N(T)uxw)ll_N + P_ixo) |y
t [»
+ exp(k_,.T) (T3 | Y™ |
.L -N NA_NC.n (6.3-25)

+ BT |, oPe (T) explk_y -k, )(t—-'T))] d"l'}

Similarly, by differentiating (6.3-24), we obtain an estimate for dE(t)/dt:

dE(t) . .
" dt n‘ expl-k_xt) {M‘Nt'ﬂ + P_ (T [X0) || _y

| ek 1 [ PmlY, M| (6.3-26)
L N [ N N NA-NC-N

+ BT, oBo(T) €xp (k_y -k o) (&=T n] d'r}
Combining (6.3-25) and (6.3-26), we have

HE®) ||, cexpti_yt) = AQ_(T)IX(O) | ¢ + CM_((T)

v ap s chymn {0 ¢ 2yt e oG

t 4
exp(ic . T) || Y (T) | a7 + exptk_ T) | E(T)| , L(ARST)
f o -N N NA Co f o N acARd
+ CP.,JT)) exp((k_N.kd (t=T)) d‘r} (6.3-27)
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6.4

where

dy,_(t)
1Y) | = Al ), + C N (6.3-28%)
N AN NTONTTUN N[Ta |~
Following the same approach, it can be shown that | Ylt) I AxC satisfies
the following inequality: NN
(¥, | < K.(N,T) exp k.(N, T) t (6.3-29%)
NI A e 0 1
where K (N,T) 18 defined in (6.3-23), and
o - . _ _ "
k (N, T) = APUT) + CPUT) - Ky . (6.3-30%)

The desired estimate (6.3-21) can be obtained by substituting (6.3-29) into
(6.3-27) and applying Gronwall's lemma. This completes the proof.

Remark 5: For the second order system considered here, statements anal-

ogous to those of Remarks 1-4 can be made. Here, the expression correspond-
ing to (6.3-5") is considerably more complex than K(N,T) as given by (6.3-23),
and will not be given here.

NUMERICAL EXAMPLE

Here, the system given by Example 1 of Section 6.2 will be considered. Let

N
Wyt x) = E 8y () 810 B 7X (6.4-1)
p=l (n)

where {t) is the nth component of the solution of the truncated system
“N@)
corresponding to (6.2-5). Also, we set

ugltx) = wyltx) + (1-K) ' x f g(E) wyft.£) dE . (6.4-2)

[+
Thus,
1 2 1/2
]Iu(t,x)-uN(t,x) | = [fo |u(t,x)-uN(t,x)] dx] < ||w(t,x)-wN(t,x) I
g~L/2 |1-k| ! lvy®) ] (6.4-3)
where
1
VNt = fo BLE) WL, §)-wy (b, £))dE = lge)| [wit.x)- N(t.m:)ll

{6.4-4)
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It follows from Parseval's formula that

Jut-ugtx | = fa@-ager] @+ vF | KD e
(6.4-5)
where a(t) = (al(t). az(t),...) and gN(t) - (al(t).... ' aN(t)) .

Applying Theorem 1, we have the following estimate for the error due to
approximation:

fut,x)-ugt,x) | = { la)]|_y + &_yla©) ] ¢}

(1+ (V3 1K) g [hexpa-k g t

(6.4-6)

To check the sharpness of the error estimate, we consider the special case
where

gy = -3{— sinx y . uyx) = sin(rx/2) (6.4-7)
The system (6.2-5) then becomes:
da_(t) 2
it + 4 al(t) = (0 , (6.4~8a)
da_(t) 2 ..n
n 2 - ST(-1) . n o
at + n wan(t) an al(t) ; n=23,.,..
(6.4-8b)
n+l
-1
a (0) = 'nLaT-er-T) , n=12,... (6.4-8¢)

and
1

K-J' tgE) o = 3/4 = 1
0

The above condition permits the solution representation in the form of (6.2-8).

Now, the terms in the error estimate (6.4-6) can be easily computed; viz.,

°° 1/2 1/2
lso] = o [ p> n’z(mz-l)'z] -[_5_ o4 ] .
n=1 12 '_2
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n=N+1 Br N
00 1/2 1/2
2 2 2
3r =2 37 L4
A S Do R
n=
00 1/2
2 2
AN = 3: Z n-2] = Z?'I_ ,
- n=N+1
2 2
r 22 T
kw o Mm’ e Mm{l’r}} T 4 ’

1 1/2 1/2
lgx) | =U lgmlzd-s] - —:”;”—[J' sinzwgdg] - 2
0 0
Thus,

2 1/2
fu.x)-uyt,x) || = “}T{‘% znlrzrr * 3: (152 ) :z) t%'

2 2 /2 2
3r 3T T w
Jl+4rs_§exp[ 4 (_6 -1) ‘T]t

(6.4-9)

On the other hand, (6.4-8) can be solved explicitly be first solving for al(t):

aft) = 2= exp (-2 t) (6.4-10)
1 Ir 4
Substituting (6.4-10) into (6.4-8b), we have
da (t) n+l
n 22 . m-1) 2 oo
it + n wan(t) n exp{-# t/4) ; n=2,3,...
(6.4-11)
The solution to {6.4-11) is
n+l
— -1 2 » — -
a_(t) = T(‘EQH)'} exp(-xt/4) ; n=2,3,... (6.4-12)
By direct computation,
2
lat)-ag )] = fao)_ - exp(-7t/4) (6.4-13)
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6.5

Now, theestimate for the error obtained by applying Theorem 1 is given by:

l n{u l 2 (5 a2\ v
a(t)~a_(t)) = 4 |af0) - 3x n 5 - 4 t
2 w3 (Z0) (5 4)

n=N+1
2 1/2 2
[_31(1_ ) 1) ) '—]t
exp 4 \ 6 4
(6.4-14)

The difference between the estimate (6. 4-14) and the exact result (6.4-13) can
be interpretated as follows: The {...} term in (6.4-14) is an estimate of
the effect of the first N components of the solution on the remaining compo-
nents through the coupling of the general system; the [...] term in the expo-
nential coefficient of {6.4-14) is an estimate of the over-all coupling effect

in the general system. In this special case of the example, our choice of g
as given by (6. 4-7) effectively decouples the system equations as apparent
from (6.4-11).

CONCLUDING KEMARKS

The straightforward truncation of an infinite dimensional system of linear or-
dinary differential equations considered here is certainly the simplest possible
form of approximation. However, this approach has been commonly used in
the engineering literature without consideration of the errors involved. From
the mathematical standpoint, we have demonstrated in effect that the first and
second order infinite system of linear ordinary differential equations under
consideration satisfy the "principe des reduites. "
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6.6 APPENDIX 1

Gronwall's Lemma (slightly modified): Let u(t) satisfy the following integral
inequality:

t
uit) = &+ I @(T) A exp kit-T) + v(T))dT (6.6-1)
0

where A and k are constants with A > 0, and v is a specified func-
tionof T. Then,

u(t) S (5 +V(t)) exp(A +k) t (6. 6-2)

where
t T

vit) =-f [v(’T)-k(6+J v(s)ds)] exp(-A+k) T) dT . (6.6~3)
0 0

Proof: Let wi{t) equal tothe right-hand side of (6.6-1). Then,

ut) s wit) ,  w@) = 6 (6. 6-4)
and
t
%’fﬂ - Au(t)+v(t) + j ku(T) A exp k(t~T) dT (6.6-5)
[

In view of (6.6-1) and (6.6-4), we have

t

d—‘;{“— - A+K)Ww(t) S v(t) - k (5 +J' v(T) dT) . (6. 6-6)
o

It follows that

t
L W) exp(-(Ak)t) ] = exp(-(A%k) t) [v(t)-k (o+ J' v('r)d'r)]

o

(6.6-7)

Direct integration leads to the desired estimate (6.6-2). Hence, the proof is
complete,
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6.7 APPENDIX 2

Notation for the second order system:

o 2 1/2 N 2 1/2 © 1/2
i A -[ Z anm] Ay -[ Z anm] . A_N[ Z anm]

n, m=1 n, m=1 n, m=1
c© 1/2 N 1/2 (6.7-1)
@) c-[ E 2 ] , C -[ E o2 ] 00 1/2
n,m=1 " N n,me1 ¢ o = 2 02
¥ ] -N nm
n, m=1
(6.7-2)

(iii) }LN-Min{c},k_Nﬂ Mm{c},k-Min{lﬁqk}

nsN n>N
(6.7-3)_
(i) P.(T) = Max {|pn(t)|: n<N,0st=T} ,
P (T)=sup {|p t)|:n>No0=t=T},
P (T) = Max {P(T),P_(T) } (6.7-4)

(V) Qy(T) = Max{|qn(t)|:nSN,0 =tsT} ,

Q_\(T) = sup { an(t)lz n >N,0st=sT} , (6.7-5)

dp_(t)
dt B cnpn(t)

(vi) i)N(T) -{Max :nSN,OStST} ,

dp;_,_(t)
at . P |

n> N,0 stsT},

P—N(T) = sup {

P (T) = Max {B(T) , P_(T)} (6.7-6)

g 2 1/2
(vil) M (T) = Max [ ap (t)x ) ] ’
N tel0,T] n= nn o(n)

1/2

M_(T) = sup [ Z (ap ) ]
te[0,T]*n>N

M(T) = Max {MT), M_(T) } (6.7-7)
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