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DYNAMIC STIFFNESS MATRIX FORMULATION BY MEANS OF
HERMITIAN POLYNOMIALS

Eduard C. Pestel *

Technische Hochschule Tannover (Germany)

Hermitian polynomials are used for the approximation of the de-
formation of structural components, such as beam-and plate - elements.
In the case of one-dimensional problems (bars, beam, arches, frames)
the establishment of the elastic stiffness matrix and of the mass
matrix is straightforward, if the order of the Hermitian polynomials is
equal to the order of the differential equation for the structural com-
ponent. However, higher-order Hermitian polynomials can be employed
in order to obtain the dynamic stiffness matrix for such structural
element. Due to the matrix conderisation, necessary in this case, the
dynamic stiffness matrix can no longer be split into separate mass-
and elastic matrices. It has been found that the use of higher-order
polynomials yields more accurate results at less computational expense
compared with the procedure where the structure is divided into more
individual segments whose stiffness and mass matrices are established
by means of polynomials of order equal to that of the differential
equation. The application to plates is somewhat more intricate, since
the condensation technique is somewhat problematic. Two ways of solv-
ing this dilemrna are indicated.

INTRODUCTION

Matrix Methods require, by their very nature, the discretization of the siructure under
consideration into a finite rumber of components. The inertial and elastic properties of each
component can be fully described by means of its transfer matrix, or by its dynamic stiffness
matrix, or by its dynamic flexibility matrix. From the treatment of beam problems we know
that the elements of these matrices congist of transcendental functions whose arguments
reflect the inertial and elastic properties of the structural component. Thus, whenever the
exact matrix representation is possible, we find that we cannot split such matrix into separate
mass and elastic matrices,

Separation becomes possible only when in the approximation of the deformation of the
structural component the number of free constants assembled in the vector @ is equal to the
number of forces P (and, likewise, to the number of the associated displacements u) applied
to the boundaries of the structural component. Then we have the linear relationship

v=La
where L is a square matrix and it is possible to establish the matrix equation
p=Su =(-wM+K) u

where S is called the dynamic stiffness matrix, while M and K are mass and elastic stifiness

*Professor of Mechanics and Director of the Institute of Mechanics at the Technische

Hochschule Hannover. PRECEDlNG
479 PAGE BLANK



AFFDL-TR-66~80

matrices respectively, However, when the number of the free constants @ is larger than the
number of forces p applied to the houndaries of the structural component, then the separation
of the dynamic stiffness matrix S into separate mass and stiffness matrices is no longer
possible. Let the vector u denote the displacements associated with the forces p and let the
vector v denote the boundary displacements (higher derivatives) to which there are no associate
boundary forces. Then we can find the following relationship

EIRNEEE SR
(] D,' D, v
which upon elimination of v leads to the matrix equation

p = Su
where

S = D, ~D,D, D,

is the dynamic stiffness matrix which now no longer can be split into separate mass and stiff-
ness matrices. These dynamic stiffness matrices of the individual structural components are
then assembled in the usual manner to obtain the dynamic stiffness matrix of the whole
structure. It has been found that the approximate formulation of the individual dynamic stiffness
matrix for bar-, beam-, rectangular and parallelogram disc~ and plate-elements can be
effectively accomplished by means of Hermitian polynomials,

HERMITIAN POLYNOMIALS

For the benefit of those unacquainted with the nature of Hermitian polynomials (Refw
erence 1) a short summary of their properties may be injected. We define a polynomial
w(§) (o € £<1) as follows

wi€)=a, p (£1+ q,p, (&) + ... + ag py (&) + )
(1
(£)

+ q (E)+... +q

m+i pm+| 2m pzm

If we choose

q, = wio) = w,, q2=w'(ol=w'° e Qg =wll) s w .qm+z=w'(ll=w: (2}

where the primes denote derivatives with respect to ¢, the polynomials p (f) (k=1,2,.. .,2m)
become Hermitian polynomials, and we can find their structure in the fohowing manner, For
example, for £= o we deduce from Equations 1 and 2 immediately that

P, fol=1, P, {o)=0" p3(o)= o..... pzm {o}=o

Furtg}ermore, differentiating Equation 1 with respect to £, we find in view of Equations 2
for§=o

{m-1) ,

i - ' t !
w(o)-wo p, lo} + o pz(ol+...+wI 2m

(o)

and therefore we conclude that

p, (0)=0 | pylo)=1 | pylod=o, ..., pp_fo)=o
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In this way we obtain (2m)z equations, and if we define the Hermitian polynomials
p® =1,2,...,2m) as

2 2m-i
pk(E)-h“+hkz£ +hk3€ +"'+hk,2m £

we realize that the above (2111)2 equations suffice to compute the (2m)2 coefficients
hgg x£€= 12, ..., 2m) in the 2m Hermitian polynomials pk(E). Since the polynomials
pk('E) contain 2m terms each, they are said to be of order 2m. Consider the two cases that
2m = 2 and 2m = 4, Now it is obvious that in the first case

p,(§)=h +n ¢ (2m=2)
and in the second
2 3
p'(f)-h”+hlzf+h|3£ +h '3 (2m=4)

Hence we find that pktf) is different for different orders of the polynomial, and thus we shall
from now on also denote the order of the Hermitian polynomial as follows,

2m
P ) H (&) (3)

For example, in the case 2m = 4 the four Hermitian polynomials (k=1,2,3,4) are written

q 2 3
H(Er=n +h, & +n, & +n, &

4 2 )
Hz(e’ hzn"’"zz‘f"*hza £ +h,, E

(4)
3

4 2
Hafé) h3|+h32§ +h33£ +h34€

4 2 3
: Ho(€) = hg +hep & + 0y & + 0§
This set of equations may then be formulated in matrix notation:

1T 177
HI hy hiz hl3 h|4 |
4 4
B&)z Hyl=|hy, hee ha3 hea || € (5)
4 : EZ
Hy hs hap his hse
4
3
Hg h4| hey h43 has EJ
I b - L

As shown above, we have (Zm)2 = 16 equations to determine the 16 coefficients h, g. Thereby
we obtain the Hermitian coefficient matrix

i o -3 2

;i . o I -2 [ (6}
o o 3 -2
0 o] -1 |
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Likewise we may compute Reference 1 the Hermitian coefficient matrices for the cases
2Zm=2,2m=6,and2m =8

2 L (7)
0 |
rl 0 0 -to 5 -6
0 1 o] -6 8 -3
.3 3 1
6 ° ° 3 2 2 2
H = (8)
o ) 0 lo -5 6
o ° 0 -4 7 -3
| 2 I
° ° ° 2 7 2 |
l 9] 0] 0 - 35 84 =70 20
o | 0] 0 -20 45 -36 lo
o o L o o 2 1 4
2 2 2 2 2
| 4 6 4 |
0 0 0 — - = — -— —
s 6 6 6 6 6
H = {9
0 0 o o 35 -84 70 -20
0 4] 0 0 -15 39 -34 lo
° o o o S5 14 3 _8
2 2 2 2
l 3 3 |
o e o o &= & % %

From these matrices we read, for example, that
a 2 4 5 8 7
H3=-2|-(€ -10E +208 -15E8° +4E )

Figures 1,2,3 and 4 depict the Hermitian polynomials of second, fourth, sixth, and eighth
order, respectively. In view of Equations 1,2,3 and 5 the Hermitian polynomials are then
assembled to form w(£) as follows:

a2m
w(€) =w n(&) (10)
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where

, (m-1) p {m -1}
'T - [wo wo e wo ‘ wl wl e wl ] (11)

Formulation of the Individual Dynamiec Stiffness Matrix.

The formulation of the individual dynamic stiffness matrix is most easily accomplished by
means of Lagrange’s Equations: :

d oL aL
T( adk ) - dq

= Qk (12)
k

where L =T - Uis the so-called Lagrangean with T as the kinetic energy and U as the potential
energy, while q, is the k-th generalized coordinate, and Qy the k-th generalized force. For
example, let us compute the dynamic stiffness matrix relation for a straight beam element i
{Figure 5) in harmonic vibration of circular frequency w. Then we have

T =—é—w2 flp. widx ' Uu=-— EL ('—'"'-'5"') dx
or with § = 2+
Z; |
__1 2 2 ___l__l_ " )
Ty w 'Qi fy.w d§ and U= L _!: ET (w") d& {13)
)

Approximating the deflection shape w(€) by a Hermitian polynomial of fourth order (cf.
Equations 4, 6 and 10)

W€ =Wl b (Er=w (1-3E° + 28 1wl (E-2£° + &7

(14)

2 3 . 2 3
+wi+‘(3€ -2& 1+wi+| (-& +¢&

and using w;, Wi, W4 and w' . a8 the four generalized coordinates q,, q,, d,. andq, -
reSpectlvely, 'we obtam the following four Lagrangean equations

]
Ow
&€ =0, =Vi+[i.£fia_

-——fEIw"-—a—:;dtf—fim f,u.w
o 0

_.f:!wzfp.w
0

0 ¥ l
(15)
| |
I Ow
— L¥ 4 =q, + L[t d
£3 9 o Wit ot ﬁ f g aw < i l'{ ' dwiy, ¢
|
|
ow Ow 2 0w
EI = =M, + L | f.——F—d
Q 5 " a“‘.+| AR 'hw Owiy €70 My f"c{ P Owiy ¢
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In these equations Vi, M;, Vi4j, Mj4 are the boundary forces, and f;( §) describes the
harmonic force/unit length of frequency w applied to the beam element i. Let us consider the
special case that only boundary forces Vj, M, V4, and Mj4, are applied, and evaluate the
inte ra.ls in the above equations for El . const, and i = const. Then we obtain readily with

wpll/Er =% vE€*/El = V and ML"/EI = M the four Lagrangean. Equations (15) in
matr1x notation (cf Equations (14) and {4) )

T « T f ¢4 4 vl
w fh"Hl" dé -8 wfh H, d€ = Vv,
0
} i
T L Su %4 T a4 T (16)
wfh Hy d -8B w f hH, d§ = M,
0 o
fa a4 P
T » ~ - 4 T .
wfll Hsdqf Bwth3d£ Vot
o o
T : 4~4a 4 T ! 4 4 —
“IhH4d'E'B'I"H ¢ = My,
) o
or with P= {V M V a-nl_'_!}in one matrix equation
la 4
) [
Putting
'a, 4, T
fh 0"y d§ =K. {dimensionless stiffness matrix)
o ! ‘ (18)
and
4T
f h(h) 4§ = W, (dimensionless mass matrix) (19)
o
weé may also write
4
tKi—B M)w:=p (20)
The evaluation of Equation 17* yields the well known result (Reference 2)
12 6 -12 6
& 4 -6 2
K. -
! -2 -6 12 -6
6 2 -8 4q

] .
*The integrals fh(thdE etc. have been evaluated by S, Falk for polynomials up to order
o
eight (Reference 1).
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and —_ pu
156 22 54 —13
".:I— 22 4 13 -3

' 420 54 (3 156  -22 .
-13 -3 =22 a

If we employ Hermitian polynomials of sixth order, we obtain naturally matrices K and M of
sixth order:

(1200 600 30 -1200 600 -30
600 384 22 -600 216 -8
: 30 22 6 - 30 8 1
K "2 |-1200 -e0c -30 1200 -600 30
600 216 8 ~-600 384 22
-3 -8 | 30 -22 6
20720 3732 281 6000 -1812 181 |
3732 832 €9 (812 -532 52
e ! 281 69 6 I8 -52 5
23440 | 6000 1812 181 21720 -3732 28I
-i18iz -532 -52 -3732 §32 -69
181 52 5 281 -69 6

with the displacement vector
Ykl Yie “a+|}
and the force vector
={ Vi M 05 Viy My 0 }
The _third and sixth elements in the force vector are zero, because the virtual work of
Vi, M;, Vi4 and M4 is zero for the virtual displacements d,= =3w; and g, f"
or

However this is not the case, if there is a load f( E) between points i and 1+1 Then.
example, the third and sixth component in the force vector would be

and 'o"s ff(El

d€ , respectively.

|+I
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Likewise the use of eighth - order Hermitian polynomials leads of K - and M~ matrices of
order eight:

352800 176400 16800 630 -352800 176400 -16800 630 |
176400 108000 11370 480 -176400 68400 - 5430 150
16800 (1370 3000 140 -16800 5430 -30 -25
Ko ! 630 480 140 8 -~ 630 (50 25 -3
13880 |_352800 -176400 -16800 -630 352800 -176400 16800 -630
176400 68400 5430 150 -I76400 (08000 ~-11370 480
- 16800 -5430 - 30 25 16800 -11370 3000 -140
| &30 I50 -25 -3 -630 480  -140 8
[ 5251680 978480 98640 4596 1234800 -411480 55800 -3126
978480 237600 26460 1296 411480 -134280 17910 - 990
| 98640 26460 3096 156 55800 -17910 2358 - (29
u- |29?2|960‘ 4596 1296 |56 8 3126 - 990 (29 -~ 7
1234800 411480 55800 3126 5251680 -978480 98640 -4595
—411480 -134280 - 17910 -990 -978480 237600 -26460 1296
55800 17910 2358 (29 98640 -26460 3096 -156
~3126 - 990 -129 - 7 - 4596 1296 - 156 8

with the displacement vector

' [ [ B 2 ” e
w= {"‘i MiWeYio Yik %k Yin Yy }
and the force vector (no load between points i and i+ 1)
p={ Vi M 00, Vie M0 o}

In case we use Hermitian polynomials of order 2m larger than the number of non-zero
components of the force vector p there are two ways to proceed further, in order to determine
the natural frequencies of the whole structure:

() Assemble the individual K - and M-matrices in the usual manner, Consider the boundary
conditions of the whole structure and evaluate the frequency determinant, This is, in effect,
equivalent to a matricized Ritz-procedure, considering derivatives up to the order m-1,

(b) Condense the matrix relation for each individual component after splitting the displace-

ment vector
w = [ IlT v T ]
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as pointed out in the Introduction, and rearranging Ki-B‘M.fDi accordingly:

o, , D, u P .
N et b Bt I Bl (21)
D, : 0, v 0
i
Since
b,ut+D,v=0
we have

- |
v=-0, 03u

and thus obtain the dynamic stifiness matrix relationship
' p=Su

where s-0 -0, 0,0
B - 4 L ) (zz’

is the dynamic stiffness matrix, which no longer may be split into separate mass~ and
stiffness matrices, as was the case when the order 2m of the Hermitian polynomial was eqanl
to the number of nonzero components of the force vector p. Thereafter the dynamic stiffness
matrices S are assembled to yield a smaller overall dynamic stiffness matrix compared with
procedure (a). :

The comparison of procedures (a) and (b) as applied to beam vibrations has shown that (b)
yields better results in shorter time, Furthermore it was found that the use of Hermitian
polynomials of order higher than four resulted in more accurate eigenfrequencies at less
computational expense. In Figures 6 to 13, graphs are presented that permit the comparison
of the accuracy achieved in using Hermitian polynomials of fourth, sixth, and eighth order with
the number w of segments {individual beam elements) as parameter, In the treatment oi
forced vibration Equation 21 is replaced by

o | o u
ST P00 U Bl O 8 (23)
|
Ds | 04 v q
L
With D, utD, v = q
or ' -1 -1
v:=0, q~-D, D,u
we obtain the relationship
-1 - I -1 = ,
(ol-—uzoq D,Ju=8 uvu=p D, O, 4 f (24)

For the given forcing frequency w the dynamic stiffness matrix § and the new force vector f

4817
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! : .
can be computed for each structural component. The shearing forces and the bending moments
drop out (action = reaction), when tho individual matrix relationships are ussembled so that
only the given external load is considered in the computation of f,

USE OF HERMITIAN POLYNOMIALS IN DISC AND PLATE PROBLEMS

In two-dimensional problems, such as discs, plates, and folding structurss the application of
Hermitian polynomials is straightforward, when the problem canbe expressed in reztangular,
polar, or skew-angular coordinates, t us discuss so.ely the case of free vibration of
rectangular plates. Here the Lagrangean is (Kirchhoff’s theory) '

2 2 ‘
= 2 Ow O w Fw 2 2 2 (25)
L=tofcaw dA-D(I—v)f[é‘z ot (53] '] da-eff pwlaa
. A A A :
where :
L 2 2
Dw:= 0 : + 9 wa
Ox dy
w i the deflection, ' ; '
A the area of the plate, and
H 3
D= ——E"—a the bending stiffness -
2=y -

Dividing the plate into a finite number of'rectangular plate elements, Hermitian polynomials
can be used to describe the deflection w(§ M) of each element (Figure 14):

. zm 2m 2m
wié,n)=WN () WKy (26)

2m :
The square matrix W contains the deflection, slope, etc, at the four corners 00, 01,10, 11 of
the plate element, Fbr example, i we use sixth-order polynomials (2m = 6), then we have

Q0 — } - o1
: | A I B :
€ Y YEan % “Em “nn
“ee__“’&-’i ie_gnl " (27)

0

W= :&:5 “¢n  “éEnn

_ € Y%n Y
‘ & TeEm Temm 1 Y& eEn Genm

|
I
I
I
T Y I"‘ . Y
Ule wf'f] w€nn !
|

where the subscripts . .1),{1). . . '. denote, partial derivativeg with respect to these inde-
pendent variables, ' :

]

Inserting Equation 26 in Equation 25 and using the (Zm)2 elements of the matrix W as gener-
alized coqgrdinates, we establish (2m)2 Lagrangean equations 12, In contrast to problems with
only one independent variable (bars, beams, frames and arches), now the right sides of all
2m)* Lagrangean equations are nonzero, because the for:es and moments distributed along

1
L
'
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y
the four edges of the plate elements do virtual work due to the variation of every element in
the matrix W, Consider, for example, the variation of wpy at corner 00, assuming that we
have. used 6th-order Hermitian polynomials., There will be no virtual displacement and de-
formation of the faces =0, 7 =1, and § = 1, solely the face & = 0 will be deflected such that
its neutral axis assumes a virtual displacement like the curve ﬁ, in Fig. 3. Then (cf. Fig.15)
work is done only by the shear V£5 (¢ = 0,m) and the torsional moment mf{o(f = 0,7). Hence
the generalized force (right side"of the Lagrangean equation) corresponding to the variation of
W, is:

K fl ow__ +f' 3(dw/ an)

v —_— d7 m
o €€ awnn'oo o 66 aw'r'-q‘ 00

(28)

Thus the obvious condensation technique, as used for the beam problem, can no longer be
applied. There are several, as yet untried, recourses possible, For example, we could lump
the distributed forces at each corner into the statically equivalent shear Vi' and the moments
Mg and My, Then only 12 of the (2m)® Lagrangean equations have noh-zero right sides,
namely those associated with w, WE, W at the four corners, If we arrange the sequence of the
Lagrangean equation such that thése twelve equations are on top, we have obtained a matrix
relationship corresponding to Equation 21

2m- 12
22
|
D, D, u ] (29)
2m-12 | —— = = = S U 0
03 : D, v ]
where _ , . ) ] .
v -{ o0 W«foo w'r;oo' Yo Wfm w‘f}on P T w‘qw'wnl wfll‘ w’?ll }
v={w€£°° wf‘r}°° T Mgt o wE'r}oa T %o wE‘qlo“"wffn wﬁmam}
and

pz{vgooMfoo M'noo-‘vgm Mg o M'r)or"vglo Me o Mae Ve MeEw M'qn: }

From here on the condensation technique leads, as shown above, to the stiffness matrix re-

lation (Equation 22
n {Eq ) p=5 u

where Sis now a 12 x 12 dynamic stiffness matrix. Thereaftef the assembly of these indi-
vidual stiffness matrices, the consideration of the boundary conditions, etc, is standard
procedure.
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Another approach is indicated by the well-known relationships between the moments
mé¢ , myn, m¢yn, mpé and shear V¢ and vyl distributed along the four edges (Figure 15)
and certain derivatives of the deflection w:

_ E hd 773 Wan
mf'r] ) I2(I-v2)( k2 v £° )
__EW’ S wEE
™€ T (-2 ( 2z TV T )
. B} Eha w{"]
T -ty Wl (30)
i ( amf‘q . am.,m )
VEC. ) k0§ ,9617
om dm
. 13 ui
g * ( ko€ * L )

Then we couldinsert the relationships (30) in the right sides of the (2m)2 Lagrangean equations,
except for those corresponding to variations of, say, Yoo + WEoo + Wnoo » wﬁ 00 * -2 Wy
and Wgpy . Now {2m)? 16 right sides are expressed in terms of w(€,m) ( 1Zlufau;ion 26) and its
partial derivatives, and hence the condensation of the original 2m x 2m matrix into a 16 x 16
“‘dynamic stiffness matrix'’ can be carried out. The evaluation of the vector P. containing the
gereralized forces corresponding to the variations of the not eliminated 16 displacements,
a3sembled in the vector ¥ = {w,, Weoo -+ + » Wey ) }» i8 notnecessary, because these general-
ized forces cancel each other, when the indiv &al dynamic stiffness matrices are complied

into the corresponding matrix for the whole plate,

Since the application of Hermitian polynomials of sixth and eighth order to beam problems
has yielded considerable improvement in accuracy of the results at less computational expenge
compared with the use of fourth order polynomials, there is hope that the two condensation
approaches outlined above may also prove advantageous over the straight-forward Ritz-
procedure with Hermitian polynomials. In conclusionit should be mentioned that the latter was
successfully applied to the static investigation of rectangular plates (Reference 3) and
parallelogram plates (Reference 4). It was especially gratifying to note the good accuracy
achieved in the computation of stresses, when Hermitian polynomials of order 6 and 8 were
employed,
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Figure 1. Hermitian Polynomials Of Order 2

Figure 2, Hermitian Polynomiais Of Order 4
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Figure 3. Hermitian Polynomials Of Order 6

Hg <:§

Figure 4. Hermitian Polynomials of Order 8
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Figure 5. Beam Element §
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Figure 8. Error Of Eigenfrequencies For The Simply Supported Beam
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-~ HERMITIAN POLYNOMIALS OF 4-th ORDER
—--— HERMITIAN POLYNOMIALS OF 6-th ORDER

HERMITIAN POLYNOMIALS OF 8-th ORDER
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Figure 3. Error Of Eigenfrequencies For The Simply Supported Beam
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Figure 10. Error Of Eigenfrequencies For The Free-Free Beam
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Figure 12. Error Of Eigenfrequencies For The Free-Free Beam
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— HERMITIAN POLYNOMIALS OF 4-th ORDER
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Figure 13. Error Of Eigenfrequencies For The Free-Free Beam
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Figure 14. Rectangular Plate Element

115-
e
k /‘ T 'y
/ /'). —————— nnT
S/ s
g ///V” myy
v, —T.- \V,f
x Ee X !
' m;; m;"
Figure 15,

Forces And Moments Distributed Along Faces Of Plate Element
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