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The control-structure interaction of a flexible structure, namely a cantilever beam, and a reaction 
mass actuator (RMA) is investigated. Mathematical model, in the form of differential equations 
and transfer functions, is obtained. The study is broken into two steps: (1) open loop and (2) 
closed loop. Within the open loop part, the RMA is broken into two sub-steps: (a) dead RMA and 
(b) passive RMA. In the closed loop part, negative feedback of the beam tip velocity is used for 
active RMA. Transient responses and root loci are given. 
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Introduction 

The system under consideration is a cantilever beam with a RMA (reaction mass actuator), also 
called PMA (proof mass actuator) attached to the tip of the beam (Figure 1). The RMA consists of 
two mechanical components: the magnet-shaft assembly of mass m and the housing of mass mh, 
When the magnet-shaft assembly is fixed to the housing, the RMA is called "dead RMA," and 
when the assembly is free, is is called "passive RMA." When the control loop is closed, the RMA 
is called "active RMA." The control-structure interaction (CSI) of this electromechanical system 
will be analyzed in the following steps: 

1) Open loop 
a) Dead RMA. The simplest model is a single-degree-of-freedom (SDOF) system. The 

undamped natural frequency is determined, and the beam tip response, which is obtained 
experimentally, is presented. 

b) Passive RMA. The simplest model is a two-degree-of-freedom (TOOF) system. The 
undamped natural frequencies are determined, and the beam tip response which is obtained 
experimentally, is presented. 

2) Closed 10012 
Active RMA. The velocity of the beam tip is used for negative feedback. The control
structure interaction is investigated. The transient responses and root loci are shown. 

System Dynamics 

1) Open Loop 

The governing differential equation of the beam, using Euler-Bernoulli model, can be shown as 

a4 a2 
EJ-1.+pA--1...= f(x,t) 

dx4 dt2 O<x<l (1) 

where E, I, p, A, l are the Young's modulus, area-moment of inertia, density, cross-sectional 
area, and length, respectively. 

Figure 1 Cantilever beam system with RMA (Reaction Mass Actuator) 

a) DeadRMA 

The system consists of a cantilever beam with a concentrated mass at the beam tip. The frequency 
equation of the system can be shown, see [1] for example, as 
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1 M 
1+------lL(tanlL-tanhlL)=0 

coslLcoshlL pAL 
(2) 

The transcendental equation (2) must be solved numerically to yield the eigenvalues Ai, then the 
natural frequencies are given as , . · 

m-=~ EI A-' 
I pAL I 

i = 1, 2, ... , 00 (3) 

Since the beam model given by Eq. (1) yields infinite degrees of freedom, the control-structure 
interaction of the beam and the RMA is difficult to analyze. The problem is more tractable if the 
system with dead RMA is modeled as SDOF for the fundamental mode. Figure 2 shows this 
model with K, M, and b are the equivalent stiffness, equivalent mass, and equivalent damper, 
respectively. The mass and stiffness can be calculated from physical properties, but the damping 
must be determined experimentally. 

X 

M+m 

Figure 2 A simple model of the system with dead RMA 

It can be found in vibration texts, see (2) for example, that 

K = 3 ~ 1 
M = mh + 0.236pA L (4) 

(m and m h are the masses of the RMA magnet-shaft assembly and housing, respectively.) 

An experiment was performed, where the physical parameters of the tested beam (Aluminum 6061-
'{'6) are 

£=30.75 in. A= 3 in.x0. 25 in. E = 10 x 106 psi 
lb s2 

p = 0.2588 - 1 -
in4 

Thus, the equivalent stiffness and equivalent mass are calculated to be 

K = 4.03 lb 
in 

lb s2 

M = 6.33x 10-3
-

1 -
in 

lb s2 

m = 6.47 X 10--4 _/ -
in 

The natural frequency is calculated and observed to be 3.8 Hz and 3.5 Hz, respectively. The 
response at the beam tip of the system with dead RMA is shown in Figure 3. 
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Figure 3 Response at the beam tip with dead RMA 

b) Passive RMA 

When the moving part of the RMA is released, the RMA acts as a passive vibration absorber 
(Figure 4). When b = 0, the system becomes the classical Den Hartog's vibration absorber 
problem [3]. 

X y 

r·---------------1 
I 
I ---- : 

C 

M m 

k 

absorber 
~----------------

Figure 4 System with vibration absorber (passive RMA) 
' 

The differential equations are 

(5) 

where the undamped natural frequencies can be obtained as 
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2 (M +m)k+mK ( (M +m)k+mKJ Kk 
(.()I= - ---

2Mm 2Mm Mm 
(6) 

2 (M +m)k+mK (<M +m)k+mk )' Kk 
Wz = + ---

2Mm 2Mm Mm 

The response at the beam tip with passive RMA is shown in Figure 5. 
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Figure 5 Response at the beam tip with passive RMA 

2) Closed Loop - Active RMA 

The closed loop control utilizes the beam tip velocity i for negative feedback and the system can be 
conceptualized as shown in Figure 6. 

fit) 

X 
,•------------ AMA u---~--------, 
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kx 
ex 

X 
C integrator 

Figure 6 Conceptualized control scheme 
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For physical implementation, an actual system can be shown as in Figure 7. 

I. 

DRIVER 
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Figure 7 Implementation of the control system 

When closed loop control is applied, the structure-RMA system shown in Figure 7 can be modeled 
as an electromechanical system (Figure 8). 
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Figure 8 Electromechanical system: (a) mechanical and (b) electrical 
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The governing differential equations for the mechanical part can be obtained as 

(7a) 

where fd and fc are the disturbance force and control force, respectively. The differential equation 
for the electrical part is 

R . Ldi e= z+ -+eb 
dt 

(7b) 

The electromechanical coupling is given by 

fc = kmi (8) 

If the beam tip velocity is used as negative feedback for the active RMA, 

e=ki g (9) 

where kg is the gain. Then, combining Eqs. (7-9) yields the closed-loop system equations as 

[1 
0 or} l b+c 

-c O]n [K+k 
-k 

:;.J{l{l} m 0 y + -c C 0 y + -k k (10) 

0 0 { -(k
8 

+km) km L f 0 0 

Ta.king the Laplace transform, 

lMs2 
+(b+c)s+K +k -(cs+k) 

k. ]rs)} rs)} -(cs+ k) ms2 +cs+k -km X(s) = 0 (11) 

-(kg+ km)s kms Ls+R J(s) 0 

The transfer functions relating x, y, i, and fd are given by 

(12) 

where the following are obtained with the aid of Mathematica [ 4] 

H s _ X(s) _ mLs3 +(mR+cL)s2 +(cR+kL+km2 )s+kR 
1()-Fis)- ti(s) 

Y(s) cLs2 + (cR + kL + kmk8 + km 2 )s+ kR 
H~(s) = Fd(s) = ti(s) (13) 

/(\·) s[(k +k .)ms2 +ck ,s+kk l 
11 l\") = _. - = '" X X g 

FAs) . . ti(s) 

C.AC-7 



i1(s) = {MmL}s5 

+{(MR+Lb)m+(M +m)cL}s4 

+{(M + m)cR +(Mk+ mK + mk + bc)L + (M + m)k,,.2 +(Rb+ k,k,,.)m}s3 

+{(Mk+mK +mk+bc)R+(Kc+bk)L+bk,,,2 }s2 

+{(cR+Lk+k})K +Rbk}s 

+{KkR} (14) 

The response at the beam tip, with active RMA, for different values of gain is shown in Figure 9. 
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Figure 9 System response with the active RMA: (a) moderate gain and (b) high gain 

CAC-8 



It is interesting to note that, for an otherwise stable control system, by simply switching the 
electrical leads of the RMA, the system becomes unstable or self-excited vibration is induced 
(Figure 10). 
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Figure 10 System response to positive feedback 

The stability behavior of the controlled system, ask and c of the RMA are varied, can be seen in 
Figure 11. 

(a) (b) 

Figure 11 Root loci: (a) decreasing k and (b) decreasing c 
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Discussion 
From the experimental results it can be seen that for the uncontrolled system (with dead RMA), the 
beam tip vibrates in excess of 45 seconds (Figure 3). The system's ability to dampen out vibration 
is improved by the use of passive RMA. It is about 4 seconds or 10 times faster (Figure 5). The 
system is further improved by the use of active RMA where the settling time is anywhere from 2 
seconds to less than 1 second depending upon the values of control gain used (Figure 9). 

C_oncludim: Remark~ 
Active control applied to structures provides a powerful means of suppressing vibrations, but it 
also incurs some "costs." These costs are mainly: more expense; more complexity in electronics, 
hardware and software; and less reliability. With negative velocity feedback for the configuration 
under consideration, the control system is less reliable because it may become unstable, for certain 
values of physical parameters and control gain. This fact is also discussed by Inman [5] . 
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