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ABSTRACT

Experimental observations relating to the fatigue process and
theories of fatigue are briefly reviewed. Short-time fatigue testing methods
are systematically reviewed and critically discussed. The classification of
the methods is based on the relationship of fatigue properties to static
properties, to stress-strain characteristics under reversed stress, and to
other physical properties. Other methods discussed involve assumptions
regarding the shape of the S-N curve. Also tests utilizing special loading
conditions are reviewed. Advantages and applicability of the different

methods are discussed.
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SECTION 1. INTRODUCTION

The determination of the fatigue properties of materials by the
usual Wohler Method is needless to say a time cbn’s‘ur_ning job. Not only is it
important that a sufficient number of specimens be used so that the resultant
S-N curve is statistically sound, but also is it necessary to carry some speci-
mens as far as 108 cycles for some materials.

One obvious way of accelerating the usual S-N fatigue test is to
increase the testing frequency. Although this increase in testing frequency
does not usually affect the fatigue properties more tha‘n- a few percent there
is usually a definite upper limit imposed by the temperature increase caused
by internal damping. Furthermore, unknown inertia forces and other sources
of error in fatigue testing sometimes become increasingly serious with higher
frequency. However, even if testing frequency is increased to the highest
practical limit, the performance of the usual S-N fatigue test is still a time
consuming task, particularly if statistical soundness of the results is important.

In view of the importance of reducing fatigue testing time there has
been considerable interest for several years in accelerated fatigue testing
methods; that is methods for rapidly determining the fatigue properties of
materials without completing the usual S-N fatigue diagram. Some methods
for rapidly determining the fatigue properties of materials are based on the
relationship between the fatigue limit and other physical properties of the
material. Other methods are based on the behavior of a material under various
loading histories. The validity of such relationships cannot be definitely
established until more is known about the mechanism of fatigue and the re-
lationship of fatigue properties to other physical properties. Thus, until a more
basic understanding of fatigue and other mechanical behavior is developed,
all short time fatigue tests must be based primarily on empirical relationships.

Before reviewing the various types of accelerated fatigue tests it is
desirable Tirst to discuss briefly the mechanism of fatigue. This is done in

the next section.
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SECTION II. EXPERIMENTAL OBSERVATIONS RELATING TO
THE FATIGUE PROCESS AND THEORIES OF FATIGUE

The results of metallographic and X-ray investigation on the

mechanism of fatigue may be summarized as follows.

a.

The plastic deformation under repeated stress occurs by slip
and twinning along the same crystallographic planes and direc-
tion as under static stresses.

Slip follows the same basic law under both static and alter-
nating stress (the law of maximum resolved shear siress)

and is accompanied by strain hardening (1). 2

The reversed stress also reverses the direction of the defor-
mation.. However, slip in the reversed direction does not seem

to take place along the identical slip plane, but along a neigh-

- boring one. Hence, slip in opposite directions leaves the

external shape of the crystals essentially unchanged (2).
Fatigue cracks always start in regions which have suffered
the most severe deformation, that is, along the operative,
twin, or cleavage plane. The cracks then spread along the
path of least resistance, that is, along planes of actual maxi-
mum shear stress or along slip planes.

The nature of fatigue failure in polycrystalline aggregates is
the same in fatigue as under static stresses, namely inhibition
of slip {3). The cracks start in a highly deformed portion of
a crystal from which they spread. Cracks rarely seem to
follow a grain boundary and the rate of propagation of a crack

is generally reduced in the neighborhood of a boundary.

1/

=~/ This outline follows in the main points the publication of W. Boas,

"Theories of the Mechanism of Fatigue Failure, The Failure of Metals by
Fatigue.'" Melbourne University Press, 1946, pp. 28-39.

2/ Numbers in parenthesis refer to the Bibliography appended to this

paper.
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f. In polycrystalline niaterials, fatigue cracking seems to start
early in the fatigue life, as low as 5% of the cycles to failure.
The crack which leads to fracture is generally not the first
crack which appears. The crack propagates slowly at first, and
then after a certain number of cycles progresses at an increas-
ingly rapid rate until fracture occurs (4).

g. After deformation under static stresses, the lattice distortions
are found rather uniformly throughout the volume of the specimen,
whereas under fatigue conditions the lattice distortions are
localized in regions where fatigue cracks form (5).

h. In the surface of multi-crystalline materials, residual compres-
sive stresses are developed by any kind of alternating stresses (6).

i. Little is known about the cause of the initiation of the fatigue
crack. There have been several attempits to relate the start of
the fatigue crack to the mechanism of the deformation. But all
of the existing theories include points which either cannot be
accepted or are vaguely expressed. Thus, none of the existing

theories seems to be fully satisfactory.

The deformation of a polycrystalline material is in any case inhomo-
geneous, due not only to the statistical orientation of the grains, but also
to the influence of the free surface. In polycrystalline materials, the defor-
mation of each crystallite is hindered by the influence of its neighboring
crystallites. This hindering of flow results from the mutual effect of the grains.
The greater the deviation in crystallographic orientation between two grains,
the greater is their mutual resistance to flow (7). Grain size and spacing are
also important factors determining the mutual resistance to flow offered by ad-
jacent crystals.

The total hindering effect of the environment surrounding any crystal
upon its deformation can thus be estimated by the summation of the effects of
a finite number of successive surrounding spherical layers (8). For crystal-
lites near a free surface, a part of this spherical field of influence is missing,
and crystallites actually on the surface are affected only by a hemispherical
field. Since these grains are less hindered to deform because they have fewer
neighbors, they respond plastically under stress which is locally smaller than
that required to deform the grains in the interior of the body. Plastic defor-
mation will thus occur first on the surface and be propagated from the surface

toward the inside of the material (9).
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The observations regarding the precedency of surface deformation
are based on a large number of X-ray examinations. It has been found in
static tension, compression, and bending tests made on steel and aluminum
that the layers nearest to the free surface of the specimens start to yield
under stresses which are on the average one-half to two-~thirds as great as
the yield stress for uniform yielding (10). Nevertheless, on account of the
statistical fluctuation, yielding occurs in some crystals of the surface layer
at stresses in the range of the yield strength of single crystals (11}).

These facts are of great importance in the interpretation of fatigue
behavior. They explain why the fatigue cracks always start from the surface
of the specimen, even under axial loading having uniform stress distribution.
Also this observation helps to explain the relationship between the static
yield limit and the fatigue limit. Finally, the high influence of surface
conditions on the fatigue limit becomes apparent.

Further evidence that fatigue takes place in a thin layer near the
surface is given by the experiments of E. Siebel and G. Stahli (12). The
life of a fatigue specimen could be greatly increased by removing a thin
layer (0.002") of the specimen by polishing or etching after a certain number

of cycles.

SECTION III. THEORIES OF FATIGUE

As discussed previously practically all short-time fatigue tests
_ are based on the relationship between fatigue properties and the other physical
and mechanical properties of the material. A complete understanding and
utilization of this relationship is possible only if it is considered in the light
of theories regarding the mechanism of fatigue. It is desirable therefore to
discuss briefly the three main groups of theories on the mechanism of fatigue.
The first group of theories is based on the observation that the
imperfections and elastic anisotropy of the crystallites in polycrystals cause
stress concentration. It is assumed that work hardening resulting from de-
formation causes an increase of the stress concentration until the stress in
the deformed region exceeds the static value required for rupture, thus pro-

viding initiation for the fatigue crack (13) (14).
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The second group of theories assumes a successive disruption of
interatomic bonds by alternating stresses. The number of bonds disrupted
increases rapidly with increasing number of cycles (15).

In the third group an accumulation of lattice distortions caused by
alternating slipping is assumed. The lattice distortions result in a develop-
ment of internal stresses. After a definite alternating deformation the sever-
ity of these internal stresses, when superimposed upon the nominal stress, is
sufficient to crack the material (16-20).

From a basic viewpoint these.three groups of theories are not as
different as a casual inspection might indicate. It does not appear likely
that one of these theories alone can explain the mechanism of fatigue; all
three theories considered together offer more opportunity. There is no
doubt that alternating slipping results in lattice distortion and internal stresses
on a submicroscopic scale and the nominal stress is superimposed over these
internal stresses. Also imperfections and the anisotropy of the crystallites
results in a stress concentration which is superimposed on the effect of in-
creasing lattice distortion. After a certain number of alternating stress
cycles the material is so weakened by internal stresses that a microscopic
crack is initiated.

In recent years there has been active development of the concept
that the mechanism of slip takes place by propagation of a special kind of
lattice distortions, the so-called '"dislocation'. The rate of deformation is
then determined by the number of dislocations propagated. It is assumed that
shear hardening is caused by arresting an increasing number of dislocations
in the slip plane. This increasing density of dislocations should also take
place in reversed shearing. The concentration of similar dislocations in the
slip plane results in a complicated stress field. Shear forces occur between
the two blocks on each side of the slip plane and cause a bending of the planes
and tension stresses which are perpendicular to the slip plane.

The dislocation itself is surrounded by a stress field. In this
region Hocke's law is no longer valid and must be replaced by a nonlinear
and unsymmetrical relationship. Tensile forces produce a greater displace-
ment than compressive forces of the same magnitude. Therefore, disloca-
tions cause an increase in the volume in the slip zone and a decrease of the
cohesive strength of this zone. Although increase of the volume is small (21),

since the volume of the Slip zone is relatively small compared with the total
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volume of the specimen, it results in compressive internal stresses in the
slip region. Because of the free surface influence discussed previously,
slip takes place originally only in a thin surface layer at fatigue siresses.
This explains that internal stresses arise during alternating stressing with
a compressive stress in this surface layer. These compressive stresses
are superimposed on the stress field surrounding the slip plane. Below
the fatigue limit it appears that the compressive siresses grow faster than
the additional tensile stresses perpendicular to the slip plane and thus a
crack cannot be initiated. Beyond the fatigue limit, the cohesion is so
weakened by the increasing number of dislocations that cracking is
initiated under the external loading before the balance between the in-
creasing compressive stresses and the internal tension siresses is reached.
Whether or not a crack propagates under these conditions depends on the
initial depth of the crack and the extent of the region in which the cohesive
strength of the material is weakened by reversed shearing.

The crack itself causes a siress concentration. The amount
of the concentration depends upon the depth of the crack and the radius of
the root of the crack. It is noted that in real material the radius of the
root of a crack or notch never could be smaller than the atomic distance.
Therefore, the peak stress never could be infinite at finite average stress,
as it is claimed by the classic theory of elasticity for a continuous medium
(22). Finally, for notches with such a small radius of the root, the cohesive
strength of the material associated with the attractive forces of the atoms
must be taken intc consideration rather than the actual tensile strength of
the material. This cohesive strength is on the average 1000 times greater
than the tensile strength. It is only decreased by the internal residual
stresses in the small region of dislocations. Whether a craek does or does
not propagate depends therefore upon the initial size of the crack, the
natural cohesion of the perfect crystal, the lattice condition in this region,
and the nature and amount of loading. This may explain why fatigue cracks
sometimes are initiated under alternating stresses but do not propagate.

The mechanism of fatigue described above is, needless to say,
very complicated. However, the understanding provided by this background
provides an operating framework for better understanding the relationship

between static and fatigue properties.
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In principle, the fatigue limit is marked by the alternating stress
under which the reversed plastic straining practically ceases due to the in-
fluence of strain hardening. This should result in changes in the physical
properties of the material such as damping, electrical resistance, magnetic
properties, coefficient of expansion. Some of these changes may, of course,
be so small as to be unmeasurable using presently available techniques. In
considering these changes it is necessary to consider not only stress magni-
tude, as is done in most accelerated fatigue tests, but also stress history.

Summarizing the above discussion insofar as it relates to
accelerated fatigue testing, the behavior of a material under fatigue stress

is a function of:

a) The constitution, such as crystal system, composition, state of

solution, grain size.

b) Deformation characteristics, such as yield limit of single

crystals and grain boundaries and strain hardening.

c} The surface finish, such as strain hardening by cold working,

or age hardening, etc. y
d) The shape of the surface and of the specimen. These facts in-

fluence not only the local yield point and the local stress
distribution, but also govern the ‘macrescopic stress distribu-
tion caused by different loading of the specimen.

It is thus apparent that understanding and predicting the relia-
bility of a short-time fatigue test is a very complicated problem. Practically
every property of a material is probably related in some way to its fatigue
strength, but this relationship generally differs from material to material.
Thus, the problem of short-time fatigue testing appears to be that of finding
an easily and quickly measured physical property which possesses a constant
relationship to the fatigue limit of the material. Various possibilities are
suggested from the discussion of the mechanism of fatigue, and experimentél
evidence regarding the reliability of such associations are presented in the

next section.
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SECTION IV. RELATIONSHIP OF THE FATIGUE STRENGTH
TO STATIC PROPERTIES

4.1 Stress at Which Slip is Initiated

W. Rosenhain has suggested (23) that one method of determining
the fatigue limiting range would be to determine the stress required to pro-
duce slip bands in the material. The execution of such a test would involve
the examination of polished specimen during fatigue test at various stress
magnitudes. It is now known from X-ray, metallographic, and other evidence

that the first signs of permanent deformation do not mark the fatigue range.-

4.2 Static Proportional Limit

Numerous experiments published by H. F. Moore and J. B.
Kommers (24), R. R. Moore (25), H. F. Moore and T. M. Jasper (26)
and J. M. Lessels (27) showed that the fatigue limit of all kinds of metals
lies beyond the static proportional limit and no constant relation between
these two properties seems to exist. The observation of this relationship
is as expected since localized strain hardening caused by slip is likely to
have a pronounced effect on fatigue which could not be revealed by the static
test. Furthermore, the location of the apparent proportional limit depends
greatly upon the accuracy of testing equipment; in fact, the true proportional
limit is probably at zero stress (since damping, an indication of non-linearity

between stress and strain, is displayed at even very low stresses).

4.3 Static Yield Strength

A. Schaal (28) (29) investigated the relation between the fatigue
strength and the yield strength of steel,and an aluminum alloy determined
by both static tests and by X-ray methods. He found, in agreemeht with
other investigators, that the ratio of fafigume to yield strength decreases with
increasing yield strength as shown in Figure 1. In non-ferrous metals,
having no definite yield point such as steel, the 0.2% off-set yield strength
was arbitrarily assumed to be equivalent to the yield strength. P. Ludwik (30)
also investigated the ratio of this yield strength to the fatigue limit and
found this ratio to be 0. 33 for aluminum alloys, more than 0.5 for Cr-Ni

steel, 0.75 for mild steel, 1.4 for brass, and more than 2.0 for pure copper.
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4.4 Static Tensile Strength (Apparent Value)

The first attempts to find a relationship between the apparent tensile
strength of a material and its fatigue limit were made by L. Spangenberg (31).
C. E. Stromeyer (32), and H. F. Moore and F. B. Seely (33). R. Mailaender
(34) also investigated this ratio (Figure 2) and after numerous experiments
arrived at the following relationship between the tensile strength St and the
fatigue limit Sf of steel:

S, = 0.47 St + 20%.

f
A. Pomp and M. Hempel (35) investigated the ratio of fatigue limit to tensile
strength of steel by statistical methods and found an average value of 0. 463
between the limits of 0.44 and 0.52. In general, the conversion factor seems

to decrease with increasing tensile strength as shown in Figure 3.

4.5 Static Tensile Strength (True Value)

W. Herold (36) studied the relationship between the fatigue limit
Sf and what is usually called the true tensile strength S't determined by
dividing the breaking load by the reduced area at the section of impending

fracture. He proposed the relationship

S =0.25$'t.

f
The scatter in the data he procured in relationship to the expression is shown
in Figure 4. It appears there that this relationship is not more reliable than
that based on the apparent tensile strength. Since the true tensile strength
is more difficult to obtain accurately than the apparent tensile strength, this
approach does not appear to offer much promise.
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4.8 Combination of Various Static Properties

Several formulas daveloped to permit calculations of the fatigue
strength Sf of steel from the yield point Sy and the other tensile properties,

are listed below.

a) Sy, = 0.858, + 30% (37)
b) Sy = 0.285 (S, +85,) (38)
¢) Sy, = 0.25 (S +S) + 5 (39)
d) Sp, = 0.20 (S +S,+ ) (40)
e) Sp = 0.175 (sy+st+810+100) (41)
f) Sp = & S,+BS, (42
| oc=—1-§g (.55, +17), B=-1~;—3(142-st)
g) Sp = 0.60S, 0.001 S (43)
where S_ = vyield stress, St = tensile strength, ¥ = reduction-in area,

3 10 ° strain to fracture, and Sfb = fatigue limit under cyclic bending.

The reliability of these formulas has been evaluated by hundreds of tests

on several kinds of steel including plain carbon steel, cast steel, and various
alloy steels containing Mn, Cr, Ni, W and other elements. Figures 5, &,
and 7 show the results of some of these tests and a statistical evaluation (39),
(41), (42), (28), (Figure 7). A. Fry (42) also studied the reliability of these
equations representing the following results in the deviation of the different

formulas from the experimental results:

Formaula b d e f

Deviation % | 13.0 6.7 5.6 4.6

M. Hempel-and H. Krug (44) investigated the relation between the
fatigue strength and the ratio of yield strength to ultimate strength of steel.
It was found that this relation depends on the type of treatment which leads
to an increase of the ratio; a heat treatment which increases the yield point
also generally increases the fatigue strength, but a cold-working treatment
does not appear to influence the fatigue limit (45). For materials with an

ultimate strength St' of 140, 000 psi treatments which increase the yield
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strength do not appear to effect significantly the fatigue strength. Some of

~ the data on this relationship are given in Figures 8, 9, and 10.

4.7 General Evaluation of the Various Relationships by Static and Fatigue
Properties

Since the ratio of the yield strength to the ultimate strength of a

material differs over a wide range, the fatigue limit cannot, of course, bear
a constant relationship to both static properties. Experimental results to

date indicate that neither of these two properties has a definite relation to

the fatigue limit for all materials. As discussed previously, the fatigue limit
is primarily determined by the strain limit of a thin surface layer of the
specimren. It is possible of course, that there are some relationships between
this strain limit and the yield or ultimate strength of a material, However,
the change of the properties of the thin layer would have only a small influence
on the average properties revealed by the tension test. It is not surprising
that no general relationship exists between the static tensile properties and
fatigue.

There does appear to be an approximate relationship between static
tensile-and fatigue properties within definite classes of materials, for example,
steel with some definite treatment. In justification of this it may be said
that X~ray measurements have shown a relationship between the average yield
strength of the thin surface layer and the yield of an entire steel specimen.
Therefore, it is possible that a relationship also exists between the fatigue
strength 'and the yield strength, provided that steels with similar heat treat-
ment are investigated.

This relationship loses its validity for materials without a definite
yield peint. A yield strength arbitrarily established at 0. 2% offset seems to
be affeeted more pronouncedly by the type of treatment, such as cold working
or heat treatment, than the fatigue properties.

Summarizing, there appears to be an approximate relationship between
the fatigue strength of steel and its static tensile properties. However, to

date such a relationship has not been found for other materials.
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SECTION V. MATHEMATICAL REPRESENTATION
OF THE S-N CURVE

C. E. Stromeyer {46) found that the S-N curve of steels could be

represented by the formula:

6
. 10°, 1/4
S =8, + Cloy)

where 8 is the fatigue limit, Sf is the definite fatigue limit, N is the

number of cycles, and C is a constant for the material. From the results

of two tested specimens the fatigue limit can be calculated from the equation:
6 8

10 10
Sg(—) - S, {—
2N N

\ 1/4

ERUARV [AR T
Ny Ng

This formula seems to be reliable for steels if the two specimens break at
approximately 50, 000 cycles, and 300,000 cycles or more. The equation is
inaccurate if both specimens break in less than 40, 000 cycles. This formula
suggests the existence cof a very definite fatigue range and is therefore limited
to steel. ‘
A similar relationship was assumed by W. Spaeth (47), whese assump-
tion, although not expressed mathematically, is indicated by the following
equation:

S = Sf + C -1\1%@— s

where 8§ is the failure stress, Sf the fatigue strength, NR an arbitrarily
chosen number of cycles, N the number of cycles to fracture, and C a
constant. The ratic NR/N is denoted by W. Spaeth as "destruction velocity. "
A linear relationship between S and NR/N within the limits 1 = NR/N =0
was obtained for steel K 20 with the reference number of cycles NR = 106
{(see Figure 11) and for several lead alloys with NR = 107. Several aluminum

alloys give,with NR - 107, bent curves which seem to meet at 6000 psi in the
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case of NR/N = 0. This indicates that aluminum alloys show a definite fatigue
limit which differs from zero in the same way as steel.

Spaeth assumes basically that the S-N curves are hyperbolic in form
and his procedure provides a method for extrapolation. This method has
doubtful value as an accelerated fatigue test since a large number of cycles to
failure are required for a reliable extrapolation. Other formulas for an
analytical representation of the S-N curve have been derived by several
authors. The relationship most often used at this time was proposed by
W. Weibull (48):

N = k(S - 87",

where S is the failure stress, Sf the fatigue limit and N the number of
cycles to failure; k and m are constants. This formula may be valid only

for steel, since it implies a definite fatigue limit of the material.

SECTION VI. DYNAMIC PROPORTIONAL LIMIT

J. H. Smith (49} attempted to associate the fatigue limit of a
material with its dynamic proportional limit obtained by a special procedure.
These procedures involved loading the specimen with a constant alternating
stress smaller than the fatigue strength and then superimposing static pre-
loading of increasing magnitude. If under these conditions the strain at the
mean stress is plotted against the static mean stress, the relationship shown
in Figure 12 results. At a definite amount of the prelpad the curve deviates
from a straight line and Smith concluded that this dynamic proportional limit
defines the fatigue range. Since Smith's results are not conclusive for a
variety of materials, and since his method has received little of subsequent
attention, this method must at present be given a doubtful classification.

H. J. Gough (50) determined a dynamic proportional limit under
reversed cyclic stress by measuring alternating strain during progressively
increasing alternating stress as shown in Figure 13. He found a linear
stress-strain relationship below a certain stress beyond which the strains
increase more rapidly than the stresses. He suggested that this dynamic

proportional limit is a good indication of the reversed fatigue strength.
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E. Kaufman (51) designated this limit obtained by Gough as the "alternating
yield limit". Similar experiments have been made by McAdam, Jr. (52).

T. Robson (53) tested specimens by this method in a kind of rotating cantilever
beam. J. M. Lessels (54) found that at stresses beyond the fatigue limit a
horizontal deflection of the specimen takes place, caused by damping.

W. Mason's (55) experiments indicate that the fatigue limit is greater than the
stress corresponding to the limit of the straight line portion of the load-slope
diagram. B. J. Lazan and T. Wu (56) found that for a virgin mild steel
specimen the dynamic proportional limit fell within the fatigue scatter band.
However, the dynamic proportional limit was found to be decreased con-
siderably by cyclic stress history above 84 per cent of the fatigue limit as
shown in Figure 14. The figure also shows that cyclic stress below the
fatigue limit does not affect the initial tangent modulus of the mild steel
whereas the cyclic stress above the fatigue limit progressively decreases the
initial tangent modulus.

- In general, the experiments show that the dynamic proportional
limit, although usually somewhat higher than the fatigue limit of steels and
some non-ferrous metals, does provide a reasonably good approximation
for many materials. However, some materials, such as aluminum alloys,
do not reveal a dynamic proportional limit even at stresses well above the
fatigue limit.

In considering the relationship between the dynamic proportional
limit and the fatigue limit the several factors which affect the proportional
limit must be carefully considered. For example, strain-hardening effects
caused by stress history and the effect of strain rate may be very pronounced.
Furthermore, as in all proportional limit determinations, the accuracy of

testing affects significantly the points where nonlinearity is first observed.

SECTION VII. FAILURE STRESS UNDER
PROGRESSIVE LOAD INCREASE

Recently M. Prot {57) developed an accelerated fatigue testing
method which imposes a relatively small number of cycles on many speci-
mens, thus enabling a better statistical analysis of variability. The speci-

mens are subjected to a continously increasing alternating stress until
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fracture occurs. The rate of stress increase is constant during a given test,
but may be different for different tests. Prot's method involves plotting the
mean values of the failure stress at each rate of load against the square root
of the loading rate. He proposes drawing a straight line through these points,
extrapolating this line to intersect the ordinate of zero loading rate, and
suggests that this indicates the fatigue limit. Prot (59) claims that this
method would give more precise results than the regular Wohler method for
any kind of material, metallic or non-metallic.

Prot's method was used for comparative tests of SAE 4340 blade
steel by F. B. Stulen and W. Lamson {60). Prot's method has also been used
by Ward and Schwartz (58), some of the results of this work being indicated in
Figure 15. The tests proved that the endurance limit of that steel can be
predicted with "reasonable accuracy” by the progressive-load method for this
material. It appears that the fatigue limit as determined by this short-time
test may be about 6 to 8 per cent lower than the value found by the regular
‘Wohler test. This is of the usual range of deviations obtained by the short-
time test methods in general.

E. M. Prot based his method theoretically on the assumption that
the S-N curve is a hyperbola which is asymptotic to the fatigue limit. He
further assumes that "the number of ruptures, molecules per cycle' is pro-
portional to the difference between the test stress and the fatigue limit. This
difference increases with the number of cycles in the Prot test method. Prot
derived relationships which indicate that if the failure stress is plotted against
the square root of the loading rate, a straight line should result. The formula
has the form:

S= 8+ ka2,
where S 1is the failure stress corresponding to the particular loading rate,
S; 1is the fatigue limit, and k is a material constant.

b. L. Henry (61) investigated the Prot method mathematically
based on the theory of cumulative damage under repeated loads, developed by
M. A. Mingr (62) and the statistical theory of W. Weibull (63). By his cal-
culations he obtains the formula:

1

S=8+D- ™ .
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where S is the failure stress corresponding to the particular loading rate

& , E is the fatigue limit, m and D are characteristic constants of

the material. According to Prot's theory m should be 1. However, m is
generally found to deviate from 1. For some materials two m values are
needed to describe the characteristic curve. Recent data indicate the results
of the Prot test may be influenced considerably by prestressing and coaxing
effect. G. M. Sinclair (64) made similar experiments in which load was in-
creased stepwise to investigate the coaxing effect in fatigue. Although Sinclair
did not include Prot method consideration in his work, the data are replotted
in Figure 16, to show failure stress versus average loading rate during the
stepdoad increase. This figure indicates an agreement with Prot's assump-
tion for 755-T6 aluminum alloy and 70-30 brass which are not susceptible

to strain aging according to Sinclair. However, materials such as SAE 2340
and 1045 steels, which are susceptible to strain aging display such a large

coaxing effect as to make the Prot method misleading.

SECTION VIII. DAMPING

8.1 The Mechanism of Damping in Metals at Low and High Stress

The general characteristic of damping is the increase of the
entropy. This increase can be associated with magnetic and mechanical
effects. Mechanical damping is caused by the relief of initially produced
stress differences by transportation. The two types of mechanical damping

are caused by:

a) transportation of matter (diffusion, imperfections, slipping),

b) transmission of energy (thermal energy}.

In discussing the mechanism of damping it is necessary to distinguish
between damping at low stress, (say >10 psi) which may be assumed to occur
without slipping, and damping at high siresses (say >103 psi) where deforma-
tion by slipping becomes significant.

The causes for damping at low stress (65) are discussed briefly

below:

a. Microscopic thermo-elastic damping. Adiabatic compression
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of an elastic material increases its temperature, adiabatic tension decreases
it.  Due to the elastic anisotropy of the grains, fluctuating stress gradients
occur in polycrystailine materials which result in the transmission of thermal
energy during alternating stress. This leads to a microscopic thermo-elastic
damping. Stress gradients are also caused by submicroscopic and microscopic
discontinuities in the material which lead to the same kind of damping.

b. Macroscopic thermo-elastic damping. This has the same physical

interpretation as the microscopic thermo-elastic damping, but the stress
gradients are on a large scale and caused by non-uniform stress distribution
which depends on both the type of loading and specimen shape (for example,
alternating bending or tension on notched specimens).

¢. Damping by diffusion. Not only do stress gradients cause thermo-

elastic damping, but they also influence the direction of migration of the atoms.

If, for example, a cell of the lattice is enlarged by tensile siresses, the diffu-

sion takes place easier in the tensile direction than in the contracted direction (66).
Alternating stresses cause fluctuating migration of atoms which consumes
mechanical energy and causes damping. The diffusion concept covers not

only the migration of atoms, but also that of imperfections such as dislocations.

d. Magnetic damping of ferromagnetic materials. When a ferro-

magnetic body is stressed the magnetic domains having preferred orientation
to the directions of stress are irreversibly enlarged. At higher stresses,

the domains reorient themselves in the direction of stress. This is accom-
panied by the generation of eddy currents on a microscopic scale which in-
volves a dissipation of energy and thus becomes a source of damping. This
component of internal friction may be greatly decreased by placing the material
in a strong magnetic field which holds the domains firmly in the direction of
stress thereby minimizing the domain motions which cause eddy current.

Cold working also tends to stabilize the domain orientations by internal
stresses.

Although all the above phenomena contribute to damping at high
stress, other causes dominate. As stresses are increased plastic deforma-
tion is initiated on an increasing scale even at stresses far below that limit
normally determined as the yield strength. Several important characteristics

of this phenomena are discussed below.
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a) More than 90 per cent of the total energy input during static
plastic deformation is transferred to heat while the rest is
stored in the material by increasing lattice distortions. There
is some evidence that the same is true under cyclic stress of

large magnitude.
b) The generated heat increases the thermo-elastic damping.

c) The generated heat increases the temperature of the specimen.
The amount of temperature rise is a function of the type of
specimen (material, shape), type of testing machine (heat flow

etc.), type of loading (stress distribution) and frequency.

d) Since in some cases the increase in specimen temperature is
significant, a higher rate of diffusion occurs, resulting in a
higher diffusion damping and recovery from lattice distortion.
This recovery will tend to decrease damping. Furthermore,
the increase of temperature decreases the yield strength which
results in a larger plastic deformation, a higher generation of

heat, etc.

e) Frequency of cyclic stress influences all types of damping.
At stresses and frequencies normally used in fatigue tests the
effect of strain rate on plastic defermation is the most important
factor. Increasing strain rate increases the yield strength
rapidly at first, and then more slowly after a certain critical
range has been reached (68, 69). Thus, the damping energy
is generally larger at lower frequencies than at higher fre-
guencies. Generally fatigue tests are conducted in the hyper-
critical range where the influence of frequency on the yield

strength is relatively small.

At stresses near the fatigue limit the amount of unit damping caused
by plastic deformation is much higher than that due to other weaker causes of
damping.

L/ Cooling of the specimen decreases the damping energy (67).
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8.2 Relationship of Damping at High Stress to Fatigue Properties

Several decades ago experiments were performed to determine if the
fatigue limit of a specimen was indicated by a marked change in the damping

properties of a specimen. The damping was measured by different methods:
a) by decay of free oscillations, providing the logarithmic decrement,

b) by measuring the energy of damping through a mechanical or

electrical system,

¢) by measuring the generated heat (only a part of the total

energy imposed to the specimen).

One of the first who investigated the relation between damping and
fatigue was O. Bouduard (70). With his machine he observed that marked
difference in damping occurred only when the specimen was on the point of
fracture. Further experiments on this problem were performed by F. E. Rowett
(71} and B. Hopkinson and G. Trevor (72). W. E. Dalby (73) using a vibra-
tion decay method determined the fatigue limit as the lowest stress shich
ultimately produces a hysteresis locp. This conclusion was not confirmed
by the experiments of H. J. Gough and D. Hanson (74) who measured the
heat output of the specimen by a calorimetric method.

It is known that adiabatic dilatation decreases the temperature of
the specimen, while adiabatic compression increases it. With the ini&iation
of plastic deformation, a high increase‘of temperature takes place,
because more than 90 per cent of the energy input is transformed into heat.
Therefore, the yield limit is sharply defined by measuring the heat or tempera-
ture. This phenomenon was investigated by C. A. P. Turner (75), E. Rasch (76),
R. Plank (77), J. A. Capp and T. R. Lawson (78), H. Hort (79), and
G. Tammann (80).

Based on the above phenomena, C. E. Stromeyer (81) developed
a method for determining the fatigue limit by a calorimetric method. Up
to a certain range of stress, no evolution of heat from the specimen was
observed, but beyond this critical stress perceptible heat was generated. The
heat generated increased rapidly with stress beyond this critical value. The
experiment was carried out on many metals and Stromeyer found that the
stress range necessary to produce the given rise in temperature of 0.02° C
of the cooling water used in his calorimetric apprivach was remarkably con-

stant for different specimens of the same material, but varied greatly for
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different metals. Stromeyer claimed that the range of stress determined by
the calorimetric method was the fatigue range for the material. This method
of Stromeyer was further developed by H. J. Gough (82). He measured the
change of temperature of the specimen by a thermocouple, as a function of
the stress amplitude. Gough found, in agreement with Stromeyer, that at

a certain stress which is identical with the fatigue limit for a large number
of materials an evolution of heat takes place. After experimenting with more
than eighty materials Gough (83) concluded that the fatigue range as given by
the dynamic proportional limit and the calorimetric methods corresponds
closely with the fatigue limit as determined by the Wohler Method with
relatively few exceptions. For light alloys, for example, this method may
be misleading.

Detailed comparative experiments of this type using a temperature
measurement method were carried out by Moore and Jasper (84). The 48
specimens tested showed deviations from 0 to 4.4 per cent. The fatigué
limit of 25 specimens was lower than the temperature limit; in the rest of
the specimens it was vice versa.

Putnam and Harsch (85) investigated the rise of temperature
resulting from alternating loading by a special apparatus they developed.
They observed two marked points in the temperature-stress curve. The
first point was claimed to be caused by small failures in the material,
while the second point should be associated with the fatigue limit. Some of
these data are shown in Figure 17.

R. Stribek (38) presented data, which appears to be identical
with those of Putnam and Harsch, to arrive at the same copnclusion.

Galibourg and Laurent (86) found that the stress of accelerated
temperature rise corresponds to the proportional limit rather than to the
fatigue strength.

E. Lehr (87) performed an experiment of this type using a
rotating beam testing machine he developed. The damping energy was
determined from the torque measured by a simple balance system. He
measured the change of damping as a function of stress and observed two
significant points of the damping energy-stress curve as shown in Figure 18.
One point (A) marks the beginning of deviation of the curve from the straight
line; the second point (B) is obtained from the abscissa intercept of a line
drawn tangent to the higher damping portion of the damping-stress curve.

The damping was measured after about 1500 cycles (one minute after the
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beginning of the test) when the value of the damping energy had stabilized
according to Lehr. In general, the fatigue limit is near point A for steels
with a small initial damping, and near point B for steels with a high damping.

P. Ludwik used, in most cases, the Schenk torsion and bending
fatigue testing machine with an optical system. for indicating the hysteresis
loop. He measured the change in damping during sustained cyclic stress and
found, for steel, a maximum in the D-N curve (88). No relationship was
found to exist between this maximum or other damping trends and the fatigue
strength. Further, the experiments showed, as indicated in Figures 19, 20,
21, and 22, that the damping is not stable in some cases even after .108 cycles.
The increase of damping in the first stages was also observed by H. F. Moore
and J. B. Kommers {89) and designated as "heat burst".

P. Ludwik and R. Scheu (90) made comparative experiments of
damping energy as a function of number of cycles on tool steel (StC 110),
high carbon steel (StC 100), mild steel, Si-steel, Al-Si-Cu-Mn alloy and an
Mg alloy. They compared the change of temperature of the specimen with the
total damping energy and investigated also the influence of cooling of the speci-
men on damping (Figure 23).

Since the temperature increase in uncooled specimens is significant
at high stress levels, cooling the specimen so as to maintain room temperature
resulted in a significant decrease in damping. They claimed that the tempera-
ture rise caused by increasing alternating stresses marks the fatigue limit in
the same way as the rise of damping.

P. Ludwik {91) also investigated the difference between the tempera-
ture rise and the rise in damping and the dynamic proportional limit. He found
that for magnesium and aluminum-copper alloys the point of temperature rise
occurred below and the dynamic proportional limit occurred above the fatigue
strength. Duralumin showed a smooth D-N curwve and no marked point of rise
of damping. Pure copper and brass showed the point of rise of temperature
and the dynamic proportional limit far below the fatigue limit. Mild steel
showed the same, but not as large a deviation. The fatigue strength of Si-steel
was identical with the point of temperature rise and the dynamic proportional
limit. Soft Cr-Ni steels have the fatigue limit above the point of temperature
rise, while hardened and tempered steel showed no significant discontinuity

in its damping curve. Cr-Si steels showed a similar behavior to the Cr-Ni
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steels. In general, the dynamic proportional limit was found to be at stresses
higher than those producing a significant temperature increase.

W. Herold {92) investigated the damping measurement type of short-
time fatigue tests on about 80 different steels. He found the best agreement
between the results of his short-time test and the Wohler test for steels with
an ultimate strength of about 100, 000 psi as shown in Figure 24. Steels with
a smaller strength had a high damping, which causes the point of the rise of
damping to be significantly below the fatigue strength.

A deviation method employing damping measurements to find the
fatigue limit was developed by A. Esau and H. Kortum (93). In this method
the alternating stress was raised in steps and cyclic stress was continued
until stabilization of the damping occurred. At a definite stress the darﬁping
failed to stabilize and steadily increased. The authors claimed the stress to
be indicative of the fatigue limit. This method probably has very little appli-
cability since most materials do not appear to display stabilized damping at

all stresses below the fatigue limit.

8.3 Damping at Low Stress

E. Gerold and A. Karius (94) investigated the influence of alter-
nating stresses upon the damping at small stresses, and its connection to
the fatigue limit. Damping at low stresses as a function of alternating stress
magnitude shows, according to these investigators, changes similar to those
at high stress. In accordance with Lehr's method, Gerold and Karius
determined the fatigue limit from the alternating stress at which low stress
damping rises. They examined Brass 58, Al, Al-Cu-Si alloy and steel by
this method, and found it only applicable for steels with less than 0.6 per
cent C. The change of the natural frequency could be measured by the same
equipment, It was found that the change of the natural frequency caused by
alternating stresses was in accordance with the change of damping (Figure 25).
Since lattice distortions caused by plastic deformations increase
the damping, this method is also an indicator of the initiation of plastic deforma-
tion. Not only is this method subject to the uncertainties of thﬂé Lehr Method
but there is also another factor which adds to the total uncertainty. Damping
at low stress indicates any kind of change of lattice condition. Besides

plastic deformation, phase changes or change of state of solution, etc., also
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cause a change of lattice distortion. These effects are superimposed which
magkes the detection of the fatigue limit difficult. Further research must be
done o clarify this problem.

All the short-time fatigue testing methods based on damping measure-
ment as discussed above do not take into account stress history effects.
P. Ludwik found that the effect of stress history on damping at stresses below
the fatigue strength was small in most cases. B. J. Lazan and T. Wu (56)
found that for mild steel damping does not change with stress history until
a certain critical value, which they designated as the ""cyclic stress sensitivity
limit," is reached. At stresses below this limit there seems to be no effect of
stress history on damping (See Figure 26). The relationship of the cyclic
stress sensitivity limit to the fatigue limit and its possible use in accelerated
fatigue testing is currently under study at Minnesota. One advantage in using
this limit is that it is independent of stress history during a stepwise load
increase test. Cyclic stress sensitivity limit is found to exist not only for
mild steel, but recent work at Minnesota indicates that other materials, in-
cluding alloy steels, gray iron, aluminum alloys, and magnesium alloy, also
display this critical stress. In general, the ratio of cyclic stress sensitivity
limit to fatigue strength was found to be in the range of 0.75 to 0. 90 for the

materials investigated.

SECTION IX. CHANGE IN MODULUS OF ELASTICITY

Comparative experiments of B. J. Lazan and T. Wu (56) showed
that the tangent modulus of mild steel unlike its damping or proportional
limit was not affected by stress history below the fatigue limit. However,
cyclic stress above the fatigue limit decreased the tangent modulus progressively
with increasing number of cycles (Figure 27). If other materials display the
same behavior the change of tangent modulus by stress history might have

possible use for rapid indication of fatigue properties.
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SECTION X. MAGNETIC PROPERTIES

E. Moench (95) procposed a short-time fatigue test method for ferro-
magnetic materials. This method is based on the fact that plastic deformation
and fatigue changes significanily the magnetic induction of a ferromagnetic
material which can be ‘measured by a relatively simple method. Moench found
that every ferromagnetic material has its own "magnetic stress limit" which
can be cbtained in a short-time test. This magnetic stress limit is reasonably
close to the fatigue limit for mild steel, but deviates for steel with a higher
carbon content. Further experiments con this problem have been carried out
by F. Ferster and K. Stafnbke (96}, K. Fink and H. Lange (97), H. Fink and
W. Hempel {98), and R. L. Cavanagh (99), without giving more details.

SECTION XI. ELECTRICAL RESISTANCE

Shoji Ikeda {100} proposed in 1928 to use the change of electrical
resistance caused by alternating stresses for a rapid determinaticn of the
fatigue limit. This method was investigated in detail by F. H. Moore and
Seichi Konzo {101). The test was started at low stresses and the stresses
were gradually increased stepwise. At the end of every stepwise increase
in stress,readings of temperature and electric resistance of the specimen
were taken. The curve of electric resistance versus stress magnitude shows
a definite break at stresses in the range of the fatigue limit. Comparative
tests were made by Mcore and Konzo with Armco iron, 0.2 carbon steel,
0.52 carbon steel, hardened tocl steel, brass, monel metal, and coppef
(Figure 28). The tests showed a fair coincidence between the fatigue limit
as determined by the electric-resistance test and by a regular long-time
fatigue test. In general, the electric-resistance test gave results in the
"'safe''range., The average deviation between the limit as determined by
the two methods was 4. 67 per cent, and the maximum 9.4 per cent (with
the exception of 0.2 carbon steel which had a larger deviation). The electric-
resistance tests were in fair coincidence with the rise-of-temperature test.
In the case of monel metal the rise-of-temperature test failed while the
- electric-resistance method gave good results.
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Changes in the electric resistance of a material are caused {(a) by
a change of temperature, and (b} by the structural rearrangement within the
metal {state of order of the lattice). In general, the electric resistance of
a metal is increased by a change of its structure from the ordered to the dis-
crdered state, as is caused, for example, by cold working. Moore and Konzo
made the important observation that in some cases the electric resistance
decreased at alternating siresses below the fatigue limit, in spite of the rise
in temperature {(Figure 28}. From these‘ results it may be concluded that
aliernating stresses below the fatigue limit may cause a change of the struc-
ture of the metal from the disordered to the ordered stage. This is in accor-
dance with the observations of F. Vitovec {102} that the free energy of low
carbon steel is diminished by alternating stresses below the fatigue limit.
At stresses beyond the fatigue limit, an analysis must take into account the
existence of several zones caused either by stress distribution or surface
factors. One zone is at the surface whose lattice distortion is increasing, and
a neighboring zone in which the lattice distortion is decreasing (103).

In general, the change of eleciric resistance caused by celd working

is more proncunced than that due to structural rearrangement.

SECTION Xil. SURFACE ACTIVITY OF STRESSED MATERIAL

Recently J. Kramer {104) found, that any kind of cold working of
metals and some non-metals causes a weak electron radiation. The pheno-
mencn resuits from the lattice distortions and increase of internal poiential
energy of the material caused by cold working. Cold working causes a metal
io attain a more disordered lattice. As a result of the thermionic motions
of the atoms, recovery takes place causing a disordered transformation
which is accompanied by the release of electrons. The resultant radiation
depends upon magnitude of strain, temperature, time, and surface conditions
of the specimen. The change of radiation by cold working and tempering
conforms to the change of the eiectrical resistance. Because of the uncon-
irolied influence of the surface condition only qualitative measurements can
be made at present. Nevertheless, the radiation effect can be used for
comparative examinations and may, therefore, have possibilities in materials

testing.
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Fatigue tests on copper showed an increase of radiation at a definite
stress which may be in the range of the fatigue strength (Figure 29). Based on
his experiments, Kramer proposed to use the effect of change of radiation by
alternating stressing for short-time fatigue tests. Kramer made only a few
exploratory tests, therefore extensive experiments are necessary to prove
Kramer's proposal.

Change of electrical resistance, coefficient of thermal expansion,
and radiation effect are intimately related. It seems that exact comparative
investigations of these effects could provide further knowledge regarding the
mechanism of fatigue. However, the changes of these effects are very small

and, therefore, sensitive and usually complicated equipment is required.

SECTION XIII. EFFECT OF PRIOR FATIGUE STRESS
ON ULTIMATE TENSILE STRENGTH

The method of H. F. Moore and H. B. Wishart (105) is based on
the theory that below the fatigue limit cycles of repeated stress increase the
tensile strength, while above this limit cracks begin to develop and propagate,
whereby the tensile strength is reduced. These investigations subjected five
or six fatigue specimens to approximately 1,400,000 cycles, each at a
different stress. The stresses for the different specimens covered a range
of values on both sides of the estimated fatigue strength. After each fatigue
test, the tensile strength of the specimens were determined. The alternating
stresses were plotted versus the corresponding tensile strengths to determine
if the fatigue limit can be predicted from the peaked condition of this curve.
This method was tried on structural steel, cold-rolled steel, brass, monel
metal, nickel-steel, chromium-nickel steel, duralumin, and specimens of
cold-rolled steel with sharp notches. As shown in Figure 30, the short-
time test predicted the fatigue limit satisfactorily for all materials except
brass and duralumin. These exceptions have also been observed by the other
short-time test methods and are not surprising, since change of phase caused
by alternating loading during the test takes place, which could not be covered

by a short-time test.
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However, since the change of the tensile strength caused by alter-
nating stresses is small the resultant flat curve makes it difficult to define

a peak value with certainty.

SECTION XIV. COEFFICIENT OF THERMAL EXPANSION

A rapid method for determining the fatigue limit of materials has
been recently proposed by J. L. Rosenholtz and D. T. Smith (106) as their
"Dilastrain Method". This method depends on the effect of prestressing a
specimen by a definite number of cycles upon the coefficient of linear thermal
expansion. The coefficient of linear thermal expansion was obtained by
heating the specimens from 20° C (68°F) to 100° C (212° F) or from 25° C
to 45° C. The number of prestressing cycles for best indication depends upon
the type of material and lies in the range of 10, 000 to 50, 000 cycles for
aluminium alloys, brass, and bronze and of 80, 000 to 100, 000 cycles for steel.
The authors present limited data of the type shown in Figure 31 and claim that
the fatigue limit coincides with the minimum point as shown. With some alloys
the coefficient falls regularly to the fatigue limit and then rises, producing a
sharp "V". It should also be noted that the change of the coefficient is very
small and in the range of 1 to 5 per cent. Since the temperature range used
for coefficient measurement necessarily was relatively small instruments
of great sensitivity are redzﬂr‘"edq

This method must be investigated more thoroughly before it can

be accepted.

SECTION XV. DETERMINATION OF THE FATIGUE LIMIT
BY X-RAY DIFFRACTION

15.1 Method of F. Regler

F. Regler (107) claims to have observed sharp edges on the back-
reflection X-ray lines which enabled him to measure exactly the radial

breadth of the reflections. Furthermore, he reports an increasing broadening
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of the reflections caused by fatigue stressing. Based on these observations,
he proposed methods for determining the fatigue limit and forecasting the

life of a specimen which is loaded beyond the fatigue limit. No one other than
Regler has reported observation of these sharp edges on the reflections nor
reproduced his experiments (108), (109), and (9). It seems that the sharp
edges of the reflections observed by Regler were probably Laue asterism
resulting from the polychromatic background éuperimposed on the mono-

chromatic X-rays.

15.2 Method of R. Glocker (110)

R. Glocker used the characteristic radiation of chromium to
measure lattice parameter as an indication of surface strains to a depth
of about 0. 004 inches. At constant alternating loading beyond the fatigue
limit, he observed a continuous decrease in surface strain. In most cases,
no decrease could be observed at loadings below the fatigue limit. However,
if an initial decrease did take place below the fatigue limit it was followed
by an increase caused by sirain hardening as shown in Figure 32. R. Glocker
proposed to use this effect for rapid determination of the fatigue limit
because only 200,000 cycles are necessary for detection, whether the loading
is in the safe range or not. This method was tried by J. A. Bennett (111).
He found that a stress smaller than the fatigue strength produces a decrease

of the surface strain in the same way as stresses beyond the fatigue strength.

SECTION XVI. STRENGTH UNDER COMBINATION
OF ALTERNATING BENDING AND TENSION LOADS

E. Mohr {112) developed a method for rapid determination of the
fatigue limit primarily for thin sheets and wires. Each specimen was sub-
jected to constant tensile force and to a fixed alternating bending angle causing
bending strain considerably smaller than the tensile strain. To establish the
S-N curve different specimens were subjected to the same cyclic bending angle,
but each specimen had a different tensile force as indicated in Figure 33.

Mohr claims that the stress at the break in his curves is identical with the
fatigue limit of steel and with the fatigue strength of non-ferrous metals at

20 x 106 cycles.
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F. Erdmann-Jessnitzer, H. Hanemann, and E. J. Kohlmeyer (113)

found no timesaving by this method for testing Zn and Zn-alloys.

SECTION XVII. SUMMARY AND ANALYSIS OF METHODS

Since fatigue cracks are, in general, brittle tensile cracks, propor-
tionality between fatigue strength and tensile strength was assumed in early
work. However, no general relationship of this type could be found for all
types of materials and all conditions. The relationship between fatigue and
other static properties such as proportional limit, yield strength, and true
tensile strength have been considered again without success. This approach
has been elaborated upon by developing formulas, particularly for steel, which
give the fatigue limit as a function of several static properties such as yield
strength, apparent tensile strength, elongation, and reduction of area, etc.
These formulas seem applicable only under special and highly limited con-
ditions. However, these formulas have been used rather widely in the steel
industry of Germany.

Based on the fact that fatigue is caused by reversed slipping, the
fatigue limit was proposed to be identical to that stress at which slip lines
begin to form or at which slip lines do not appear again after prestressing.

No proportionality between this so determined stress and the fatigue strength
could be observed since other secondary effects such as strain hardening,
aging, etc., influences the fatigue properties.

Another attempt for reducing fatigue testing time is based on assump-
tions that the shape of the S-N curve is fixed. Assuming the S-N curve to be
a hyperbola, two or three reliable points may be sufficient for mathematical
or graphical determination of the fatigue limit. The Prot method also must
use this assumption, among others, to interprete the fatigue strength under
uniformly increasing load. The validity of the methods based on this assump-
tion seems tobe very limited since numerous fatigue tests show that S-N curves

frequently do not display a hyperbolic shape.
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Attempts have also been made to associate fatigue properties with
the stress-strain characteristics under reversed stress. A large number of
fatigue tests showed that the dynamic proportional limit gives a good indica-
tion of the fatigue strength for many metals and alloys and appears to have
fewer exceptions (for example, duralumin) than do other methods.

In several other methods the:change of other physical properties
caused by alternating stress have been investigated for possible association
with fatigue properties. Properties studied in this way include damping,
magnetic properties, electrical resistance, coefficient of thermal expansion,
mosaic size detected by X-rays, surface stresses detected by X-rays, surface
activity, and ultimate tensile strength. In general the change of the property
as a function of reversed stress only has been investigated, and only recently
have stress history effects been studied. All of these physical properties
have been found to be affected by fatigue stress,but in most cases the magni-
tude of change is relatively small and therefore difficuit to determine accur-
ately. To date, insufficient basic work has been completed to clarify the
significance of such associations.

In other groups of short-time tests fatigue rupture properties are
determined under conditions of uniformly increasing stress or other types of
constant load condition. Special attention may be directed to Prot's method
in which the stress is uniformly increased until failure. For reasons
discussed previously the progressive load increase method does not appear
to be applicable for all materials.

Generally speaking, some of the short-time fatigue tests seem to
be very useful as comparative tests. No one or few short-time tests display
definite superiority over the other methods and the best test for a given pro-
ject depends on individual circumstances and objectives. For any new material
or material in such condition where the fatigue properties are unknown, short-
time tests will provide only an approximate indication of fatigue propertiess
regular long-time tests must be used if accurate fatigue properties are

required.
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FIG. 32 - SURFAGE STRESS OF STEEL DETERMINED BY X-RAYS VERSUS

NUMBER OF CYCLES x 10°

NUMBER OF CYGLES AT DIFFERENT ALTERNATING STRESSES.
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FIG. 33 -5-N CURVE UNDER CONSTANT BENDING
STRAIN AND VARIABLE STATIC TENSILE
STRESS (E. MOHR).
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