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ABSTRACT

This repertis concerned with the approximation of acoustical noise
fields by the use of modulated pure tone sources., Given a specific random
signal the methods of orthogonal expansion and Fourier expansion are studied.
The integral equation arising from the orthogonal expansion is solved for
the normal functions when: a) the power spectrum is given as the ratio of
two polynomials, b) Markoff Autocorrelation function, c¢) stationary band
limited Gaussian white noise of mean zero, d) band limited stationary normal
white noise on a finite interval, e) white noise, Deterministic and random
frequency and amplitude modulation and random switching are examined as

ways to broaden spectral components.
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I. Introduction

Because of the many applications, it is found useful
to represent a random process in a sultable series of
particular fimetions over some finite or infinite interval.
Considerable study has been devoted to the problem of
expansions (Ref. 1,2,3). Orthogonal expansions have
received particular attention (Ref. 2).

The present report deels with some aspects of the
expangion of random functions into orthogonal series.
Consideration is alaoc given to how o broaden the spectrm
of a single-tone sigoal by modulation of verious sorts.
Some sttention is also given to optimal approximations of
various statistical characteristics of actual random noise
fields.

Manuscript released by suthor October 7, 1964, for publication as
an RTD Technical Documentary Report.



II. Representation of Acoustic Noise Fields

a) Orthogonal Expansion of Random Functions

It is desired to represent a randomly varying sound

pressure p(t) (see yigure 1) as a series of ortbogonal
functions with orthogonal random variables as coefficlents.
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Figure ], Typical Recording of Random Sound Field

In particular, we require
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Integrating both sides of this result from t= 0 to T and using
the second of (2), we find

3
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Taking expection and using the first of (2) gives

fm R(t, %' )y _(t')at’ = | l2 )
o ’ *n t L™ *n(t
<t<T (3)
R(t,t') = E(p(t) p(t'))

Thus we can have such an expansion as (2) provided ¥ (i) are
solutions of (3) and ‘)\n is the eigenvalue associated with

vn(t)-

From (1) and (2) 1t follows that

x = T::I' I ¥ (%) p(e)at (v

Therefore Af we knew the eigenfunctions v (t), and the
eigenvalues A , and possessed a realized value of p(t),
we could calculate the realized values of the orthogonal
raodom varisbles X . All that is needed to find A aend
¥ (%) is the autocorrelation function R(t,t'). This is
elther given or is determined from an actual recording
of p(t).

If p(t) is & gaussian random process, the random
variables will not only be orthogonal but will be
independent random variables with a normal probability
distribution. The problem of determining the probability
distribution function for p(t) when those of X, are glven
iz an extremely difficult one and bas been sclved only in
the case of gaussian variates. It i1s to be noted from (4)
that if p(t) is an independent process, X will be a
normal variate. One can easily prove this by application
of the central limit thecrem of probability theory.
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b) Fourier Expansion of Ramdom Functions

Because of the difficulty of solving the integral equation
(3) and because of simplicity, random functions are expanded
into Fourier series in moet practical situations. Unfortunately,
the random coefficlents are not orthogonsl on (0,T) except for
periodic processes. We can show, however, that the coefficients
are asymptotically orthogonal as the length of the recording
increases.

Consider a stationary random function p(t) defined on the

interval (0,T). The Fourler expension of this process on (0,T)
is

p(t) -fz [‘k cos ukt + bk sin ukt], " = kuo (5)

k=0
vhere
T
1 &
. = !fp(t)dt, a2
[+ -
2 T
- - t “kﬂtdktlanto
nk!‘/;p()c om »2, (6)
T
2
L ;f p(t) 8in ke t &tk =1,2,...
[+ ]
Now

E{nka‘] - h?- E[ofp(t)p(t') cos lniot cos juot'dtdt'}
h [ ] t 1
-2 J: ﬁ R(t-t') cos kuot cos luot datdt

- %ﬁﬁ R(t) cos ki t cos luot'd.tat'

t = t-t'

Changing veriables the double integral becomes

E{.'ka'j] - %J: cos kuotdtl:-t R(t) cos .Geo(tﬂ)d‘t

Iet A = 4/7, then



1 ?(1-7)
v [a.ka)- [ cuEutMJ\I R(s) eoszl'l('--l-k) ar

1 2{1-2)

.h[ eocamnlcoszwﬂL R{~) cosa—z-‘ldf

1-2)
- sin 21”‘[! R(t) sin M ar)

As Taw, A O

1 1
R [‘k.:] —.hf; cos 27kMA {cos ZwAA° > S(u‘) +

(N
+ sin 2wér- (0) )

S(w,) = Spectral density of p(t) and w, = —, “, 20as Toaw
unless £ 1s chosen such that lim w g ugo.
‘,T—’. )

(7) may be evaluated to give

!!(uks‘} - s(u‘) ak {8)
The normalized 3]‘-1'/&;2;, i‘-a‘ﬁf;?>
.ow

B@S,) 2, » K21 ~ (9)

In like manner one can show that
x(ikiquo

E(55 .} 0
k4 x4 k,4>1 (10)
n{ioii‘} -8

z{‘o‘é’] -3

ol

of .
Thus the expansion coefficients are asymptotically orthogonal.



It is of value to compare various Fourier expensions for
different lengths of T of recordings of p(t) wvith the exact
orthogonal expansion on (0,T). This would give some idea of
the length of record to be taken so that a Fourler expansion
would be as good as the exmct one.

III. BSolution of the Integrul Equation Arising in the Orthogonal
Expansion of & Randon Function.

a) General Results for Processes vwith Rational Spectral
Density Functions

We confine ourselves to stationary random sound fields whose
spectral density functions are rational functions of frequency.
In this case the integral equation becomes

T
[ R(t-t') *n(t')dt' - 'lnla*n(t)’ 0<t<T (11)

By the Wiener-Khintchine theorem, we know that

R(t) = a% I “a(a) &I
S(w) = _[ “R(x) o1

S(w) is the power spectral density of the random sound pressure
p(t). We now suppose that S(w) is a rational function of w so
that it can be written as the ratico of two polynomimls in w,
nemely,

(12)

2 _
s(w) = 1L08)) (23)
D ((1w)°)

D 1s at least one degree greater than K. The argument of the
K and D polynomials was chosen as a square of « because of the
general requirements placed on S{w) as & power spectral density
function. We wish to show that when the process has such a
spectral density s (13), the functions ¥ (t) satisfy a linear
constant coefficient differential eq,mtion

We start by inserting (13) into (3) to cbtain
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;—,[l _(.L)_l He-etdy ot )auwatt = Ilnlatn(tb (14)

o{ (1)%)
q/2
M(w)) = ) 3 ()
Km0
p/2 P>q (15)

) = ) o o™

and bk are constants. JNow operate upom both sides of (1h4)
th the operstor

2 »/2 X
") =) LA e
kw0
(16}

P w

A ((¢T)) 1(t-¢ )l‘, P

t D((:I.u) Je (t YAt de

”ifumn
2

- In )% o) v (0)

Multiplying by B( (:l.u) ) under the %ntegn.l f is equivalent to
operating on the integral with n(-;'z} Thus (16) can be
vritten as

T 2 ® .
= J£ () _[ e & M0y y_(40)av

. (an
= I 1 vz (%)
But
f “e"(t‘t')“an -2r B(t-t') (18)

-



vhere B(t-t') is the Dirac delts funection. Using (18) in (17),
we find

2 T 2
nim [ stee) vsnee = 1% 0iEz) v (0
or
& 2 _d |
M) vo(8) = 17 gzt v (8 B ¢ )

Thil is the basic differential equation that must be satisfied
by the expansion functions ¥ (t)

The solution of (19) will contain A and p arvitrary
constants A . . When this solution is substituted back in the
integral equation {11), it will be seen that the integral equation
cannot be satisfied except for certain values of Rn, the
characteristic values, and the constants A & must satisfy certain
conditions. These conditions show that for eech n there is only
one independant constant. This cpne constant is to be determined
from the normaliring comditions on tn(t) » namely,

T

_[ v (%) t: (S)at = ( 2;3 | (20

The procedure Just ocutlined will now be carried out explicitly.
The differential equation (19) beccmes

qézb aak* () . Iiz il : (t) (21)
k.-o_k dt .k

Try a solution

v () = A eln® (22)

‘A is & constant and @ is a parameter. Putting (22) in (21)
ve:l’indth-.tn must b & root of



q9/2 '. p/2

PR Y. (29)
kn(

k=0

This equation will have, in general (special situations can be
taken care of), p roots + 0 'tanku ), kw=1l,..,p/2. Half
of the roots are simply the negatives of the other half. A
general solution of (21) is then

p/2 |
v () = Z {A:k etux® 4 A;k e it (2%)
kwl

The autocorrelation function is given by

Tﬂ

R(r) = = d 5)
' I o (10)%) (

This integral can be evaluated by contour integration using
semicircular arcs and yields

p/2
iw 1 T = t-t'>0
Z :Bke k
kml
R(v) = ¢ P/2 (26)
-iw T
Bke k T<0
K

ukmthemotsof

p{(1)Z) = 0 (21)

lying in the upper half of the complex plane as shown in
Figure 2
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Figure 2, Location of the Roots of D((iu)a)

There are p roots of (27) + W k =laese, p/2. The
B are glven by

k
B (1 )%)
E
, 1w
dm (" Hk

Inserting (24) and (26) into (11), we cbtain

, P2 p/2
I Z} B ol9(t-t") kZ-\[A:k ux®'4 A;k e Fax®' ) ayt +
o/2
f o~y (% *")Zl ' fmxt A0 Yy g
"
p/2

- '%'22 wh ot e an st
k

(28)



Carrying out the integrations we obtain
+ BA 'ﬂankt
lnka ank-nnk-iu.
- ,-ﬂnxt
ZZ -nkn +1u. - ZZB-‘:& -+
. it
ZZ otk n 1 -ZZBnAnk STy

ZZ Lt

-nka ¥ e @ s

-n-u-u’"'

ZZ ok + 1ua)T L

|1n|22 W onx® A e fux®) |

This equation can be satisfied identically in t only if the
sun of the coefficients of the different functions of time
are egquated to zero. This gives the system

p/2 Iy A |
(a) Zl Bz~ ¢ ~ZE ) 20, 8=1,...,p/2
] nnk-iu' -nnk-in- |
p/2 ¢ (G + dug)T - (-Opg + dag)T
nk nk

(b);h( + }]=0

[ ] an'l' iﬂ. -ﬂnk-l-h.
p/a 8= l’.to,p/a (29)
+ 1 1 24
(c)'ZA ( ] 13 = | |2
nk nnk-:lu‘ nnk-i- :l.u. [ ] n

k= l’oco,p/a



p/2
ZA' —2 1 |7~| AT, k= 1,...,p/2

20 nk ank-“l -an 'H.H nk,

Equations (29s) and (29b) are & system of p linear homogeneous

equations for the determination of the AT and A" . FYor a non-
trivial soluticn, the determinant of the eoerﬁcgnts must vanish,

namely,

1 l eree -1 -l X R
in-iwl in-ili Qn"fiﬂl Qn‘-l'iﬂl

l aee "1 sayw
nnl -102 nn‘ + 101

1 . . .
e(nno+ uo)’ c(nnf wo)! vee e('ﬂm + )T
ﬂnl-l-iﬂl Qﬂ-l-iﬂl -ﬁ“-f:lul

Prom this equation we determine the eigenvalues A x ns=12...
This requires that we know the functions

8, =)

These functions rk('.\ ) are determined by solving for the roots
of (23) mtemorﬁ. We can do this enalytically in terms
of algehraic runct:lona for equations of fourth or lower degree.
This would mean that problems could in principle be handled for

D((1w)2) of eighth or lower degrees.

(30}

(31)



Equations (29c) and (29&) will be found to be identically
satisfied. All constants Ank k= 1, ee Pf2-2, Ay, X = 1,...,
p/2 can be solved for in terms of A.”/z using equations (29a) and
(29b). "np/a is determined from the normalizing condition

T %
[ v (6 "(9)as = 2 (32)

The case vhere the power spectral density is a rational
function of frequency is a very important one and covers a
wide range of practical cases.

b) Orthogonal Expension of Processes with Markoff
Autocorrelation Functions

Suppose that the autocorrelation function of a stationary
random acoustic noise process p(t) of mean zero is given by

E {p(t) p(t +t)) = R(7) = A ."""'

(33)
A = E(P(t)) = R(0), B = constant
This function is shown in Figure 3.
ro
A
0 —T
<[]

Figure 3, Graph of the Autocorrelation Function Ae



The spectral density corresponding to (33) is

s(w) = [a oBltl -tw 2% (3)
-‘[ (10)24p2

This function is plotted in Figure h.
S(w) |
2A/B

0

Figure 4. Spectrsl Density Fumction of a Process with Markoff
Autocorrelation Function

From {34), ve see that the process under consideration has &
rational speciral density function with

2
N{(iw)") = 2pA
(35)
o{(16)°) = ~(10)° + 62
The differential equation {19) becomes in this case
2
2 4 2
2pav () = |2 |°I- ;§+ Bv, ] (36)
Let
02 uple A (37)

n 2
|

Then (36) can be written as

14



da*n 2
— ¢ u ¥ =0 (38)
dta an

Ir 52< %—;, then (38) has solution
n

tn(t) = n.nemnt + 'bne-i“nt ’ un> 0. {(39)

L and bn are arbitrery constants. Substituting (33) into
the integral equation {11), we find

e T ot 2
{f e ¥ (t')ax’ -uf e v (t)at' = A |V (W), v = t-t*
b n N n n n

Using (39) and carrying out the integrations gives

it Bt -iat Bt
an —_——t . B £ e +
B + wn 8 - mn
ea(t-'.r) + 1w, T erz.(f:-'r.) - laT - e-mn':.
+ As + Ab =
n - + :i.mn n - - ion

IA |2 S L IA |2 p e Wt
n' “n n' “n
This equation is identically satisfied in t if

As An

+:u - +:u -I‘Alea
B n - ' n
(40)
Ab Ab
™ L
B - n $ - . n



n - n -0
B+ hln B = :l.lin
As .(-'B + ﬂn)'f Ahne-(ﬂ + “n)f
= 0
£ + iﬂn B+ 1Hn

The first two conditions in (40) are identically satisfied. The
second two are two linear homogeneous equations for "n and bn.
For a nontrivial sclution, we require

1 2

B+l B - iw
=0 (k1)

B+ in)? o (Bt im)?
B+ 10 B+ e
This reduces to
1 1

un cos Eun!!-l-p sin-a-un’r- 0

(¥2)

"r!""l/]%jz - 6?

Equation (42) determines the eigenvalues 7\n. It is clearly
s complicated equation and must be solved numerically.

Froa (40)

b =- L a (43)

Therefore



B-iu
V(t) = o (™" . &‘_1: o it

0 (u%)
= ﬂ*ﬁ-ﬂ_n {w cos Wt+p sinwt)

From the normaliging condition we find

2  J -1
2 B+ iw 2
- l——-------2 I { [ Iun cos w t + B sin untl at} (45)

The orthogonal expansion of p(t) now takes the form

A la
p(t) Z T {un cos w t+f sin unt} x (h6)

Thex cmn only be determined when a resalized value of p(t)
is g:lven This in principle completes the problem.

¢) Other Methods for Bolving the Integrel Equation

Another method of solving the integral equation (11) much
used by physicists is to expand the kermel R{t-i') into a suit-
able set of orthornormal functions. By this means the problem
can be reduced to the problem of finding the non-zero roots of
an infinite determinant. By Judiclous choice of the expansion
this process can be made tractable. (Ref. 5.)

d) Other Solutions

1. Stationary Band Limited Geussian White Noise of
Mean Zero (Ref. &.)

The expausion interval in -« < ¢t <« . The autocorrelation
Tunction for the process is

R(x) = G°> ';:mm ) T = bt (47)

and is shown in Figure 5.

17
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T e I v °

Flgure 5. Autocorrelation Fumction of Band Limited White Noise

B= u-uluthewathorthemiu. The spectral density
appu.riuinrimn&

S{w) *

1s,

-l - i, O (79} wh
Pigure 6. Speetrsl Density of Band Limited White Noise

Note that <p2>- 8,B. The proper functions for the expamsion of
p(t) on the interval (-e=, w) are found to be

#in t - n/2B

v () =28
2rB(t - n/2B)

(48)

18



(#n] is an orthonormal set but ¥, ore not solutions of Eq. 1l.
The expsnsion takes the form

o(t) = B ™ Z BB g (49)
21:5(1: - n/23)
vhere
=1 .=
x =28 (§P5) Ip(t) sin Zvple ) o (50)
2wB(t-n/2B)
2. Band Limited Stationary Normal White Noise on a

Finite Interval. (Ref.6. )

The correlation function is still of the form (A7), but the
expansion is desired on the interval {o,T). The proper functions
and eigenvalues are

82 [vmm, 2/2(e-1)]

v (t) = = , 0<t<?
n J‘i;:
A= <P 2R m(m, N (51)
S O ny?

"2}: 29 + 1

Rn‘(c,y) and Su(c, cos ) are reppectively, the prolate
spheroidal Bessel function and prolate spheroidal Legendre
function as given by Morse and Feshbach (Ref. 5). These

functions have been tabulated. The expansion reads

p(%) -ZJE v(X,0<t<T

T (52)
AF WESICT

19



In are independent normal variates of mean zero.

3. V¥White Noise _
Correlation and Spectral density functions are

R(t) = sob(r)
) = 5, (53)
so is a cpmmt. The integral equation in this case becomes
* 2
J 5 8(t-t) ¥ (t)av = |2 |% v (+)
or 2
s ¥.(t) = [A ¥ (¥)

T™ia can be satisfied by any orthonormal set of functions if
utako).n-Jso for all n. 'maox_pul:lonbeeoms

p(t) = 'fsozvlrn(t) X
(54)

1 * |
AN N CRACT

The results for white noise are very interesting and
potentially very useful. We can make the general statement
that very broad band random signals can always be approximstely
expanded into orthogonal series using any sultable set of
orthonormal functions.

IV. Methods of Approximating Acoustic Noise Flelds

a) Optimel Approximation Techniques

Once A and ¥ (t) are determined from solving the integral
equation, can be obtained when a typical recording p(t) is

) .n’negeta.let of realized values fort.hexn. The
series 7\ntn(t) = p(t) is then an mnalytic representation of
the realized function p(t). The sirens could be used to try
to simulate this series or the typical recording.

20



In genersl, when we have an analytic expression for p(t), we
need a synthesis procedure to approximmte p(t) with the sirens.
We might try to spproximate p(t) itself in tbe time domain by
requiring the mean square difference between the sirens' output

pk(t) and p(t) to be a minimnm. This requirement is achieved
by ninimiging
2

1 /T 2
; l[P(t) -Zpk(t)] dt=¢ (55)

with mpeét to the sdJustadble parameters of the sirens such as
center uencies, saplitude of outputs, percent modulation ete.
Lat)\( be a parameter of the kth siren, then this synthesis

'procedm'e requires

k= 1,2,-.., . §

). |
2 T 2
5 [0 =) pefer = (56)
37\& I k-l ik = l,e,--., Lk

¥ is the number of sirens and is the mumber of adjustable
parameters of the k™0 giren. (56) leads to a system of equations
for the optimizing parmmeters. Unfortunately, the system is
nonlinser in the parsmeters in almost all cases snd it is difficult
t0 solve even with digital computeis.  Here we try to optimally
synthesize one resalized value of p{t). Since p(t) is a sample
function from a random process, it may be better to approximate
scme gtatistical characteristics of the process.

Other synthesis criteria might dbe:

1. Minimize mean square difference between power spectra}.
density of p(t) and that onpk(t).

2. Optimize prob-bmty dcnsity of p(t).
3. Mintuize X :{[ (2(%) X p (1)

with respect to the parameters or the sirens. We assume here that
some of the parameters of sirens are random in character.

b) Spectral Erosdening of a Single-Tone Siren.

21



Spectral brosdening of a single-tone siren can be achieved
by verious forms of modulation or by switching techniques. ILet
us consider first spectral broadening by modulation.

1. Amplitude Modulation (Deterministic)

A single-tone siren output mey be represented by

p(t) = A cos (ot + 0) (51
vhere A 1s the amplitude of the output, w is the center fre-
quencyortheumn,ndpha)hueuﬁn. Such & siren output
as (57) contains only onme spectral component. Suppose by some
means wve are able to vary A as & function of time. In particular,
let

Awa(t) =a(L4+Acoswt) (58)

Ao’ A, and “n are constants
Then (57) reads

p(t) = Ao(l + A cos umt) cos (act + @) (59)
or

p(t) » A col(»ct +9)+ -él-Aoa cos [(m‘= + un)t + 9] +

1 (60)
+3 .A.OA cos [(mc - un) t+ 9]
By this modulation, we see that p(t) now has three spectral
components. It is easy to see that if
X
p(t) = Aoz (140 cos u_t) cos (ut+9) (61)

k=]

p(t) vill have 2N + 1 spectral components. Equation (61) includes
& wide variety of amplitude modulation such a8 arbitrary periodic
modulation and almost periodic modulation, We note, however, that
a8 long as A(t) is a deterministic function of time the spectrm
is discrete.
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2. Frequency Modulation (Deterministic)

The instaatsnsous angular frequency is defined as

w(t) *

(- + o(t))

(6@)

where the phase angle ¢ is now considered a function of time.
If we vary the frequency by a single tome, the sirem ocutput
takes the form

A and um are constants

p(t) » Ao eo.[aet + “L sin u-t]

(63)

It is well knowvn that this can be written in the form

p(t) = %‘- Ao cos uct + %Aonzi [1+ (-1)‘] J’n(%‘) {cos (uct + nn.)t

+ cos (ue - nu‘)t}

(6%)

from vhich we see that there are an infinite mmber of discrete
-} 18 the Bessel function of the first

spectral components.

kind of order n.

appearance of the intensity spectrs

of p(t) for smell, intermediate, and large values of A /u are
shown in Figure 7 with their envelopes.
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For arbitrary periodic or almost periodic mqmncy modulation,
the siren cutput is given by

- A

p(t) = Ae cos (aet +Z g sin unkt] (65)
k=]

A‘ and “nk are constants.

The mmber of sidebands increases tremendously as N increases,
but the intensity spectrum is still discrete. Only for an
aperiodic modulating wave can we obtain a continuous intensity
spectrm or spectral density.

3.) Amplitide Modulation (Random) :

Continuous spectral broadening of a single-tone siren can be
achieved through random modulation. Consider

p(t) = 40[1 + A ru(t)] cos w t (66)

vhere Pn(t) ualhtimnrymmlnndmproeeuaud.&,a,md

w, are constants. The spectral density of p(t) for a modulating
nise with spectral density function givem by

800 - 8 0% ' (67)
8 sand Ub = constants
(2]
is shown in Figure 8 for variocus modulation indices,
It is seen that spectral boradening can be guite considerabls.
Note that finite energy is in the carrier for all modulation indices.
shown . '

b.) Freguency Modulation (Random)

In this case we have
p(t) = A cos [w t+ P (t)] | (68)

mr(t)usltationmnomlmdmpmu. A u.ndw are

consbaat. The spectrun of p(t) for P (t) taken to have lpectnl.
density

o



b By /By

(69)
1+ ua/Bi

Su( w) =

is shown in Figore 9 for verious conditions. B' is the band-
width of the noise. Qn%:u mean square value of modulating

sigoal.

'
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If p < < 1, the spectral demsity is very nerrow sbout .

{l1ittle broadening). For very large values of p, the
spectral demsity is bresd sbout LA

5.) Spectral Broadening by Random Switching

Consider s stationary noise pressure of the type shown in
Figure 10.

N(t)

— }

Figure 19. Eandom Sgquare Wave

The zero crossings oceur at purely random instants to,t gecsne
Such an cutput would dbe produced (exceptrora.m‘r:lcr%cn
emuct)bymihdlmmtmhingmmdmm&oﬂ
at purely random times. The spectiral density function of the
pressure in Figure 10 is
2

g lw) o2 —Aoy (70)

l+ (-—;)

vhen ty.4-t4 is & Poisson distributed random variable,
If ve wse N(t) as an smplitude modulation function of & single-
tone siren output, we have the sound pressure

P(t) = N(t) cos [wt + ¢] ' (1)

@ is a rendom phase wmiformly AdAistributed between o and 2y.
The sutocorrelation function of p(t) is

@é



Rp = E{N(t) cos [uct + @] * Bt + 1) cos [uc(t +1)+0l} (72)
2r

R« Z0(t) Bt + 7)) :—;laa [t + 9] cos [ (+ v) +9 ] an

Bp(‘l’) " % !& (t) cos “s

The spectral density is obtained by use of the Wéner-Kintchine
theorem. We find

Sp(u) - L “Rp(r) e«.&t
B (W) i‘ f .[’e"(uc)fi-r o~(0 +e. )7 Ry(z)ar (73)

8.(0) = § (By(u-u) + 8 (wtu)]



V. Conclusions and Recommendations for Further Study

The ensrgy of a single-tone siren can be spread over a fairly
large frequency band sbout the center frequency of the siren by
various sorts of modulation. The most effective way of spreading
the sound energy over the frequency band is by random smplitude
or fregquency modulation.

A given acoustic noise field may be approximated (in spectral
density) by centering the sirens' center freguency at those which
constitute the given signal or by dividing the spectral density
of the given signal into equal energy bands and assigning en energy
band to each siren, The approximation can be improved by smplitude
and frequency modulating each siren. Approximation of a given
acoustic noise field in some optimal wvay lesds to the solution
of & system of non-linear equations.

Farthser work may be carried cout to find other soluticas to
the intermal equation occurring in the Karhimen-Lowve expension
of the random noise field. It womld be particularly desirsble
to find some exact solution so that the proper expansions could
be compared with & Fourier expansion of the field. Another
direction in which a continued investigation might bear fruit is
that of tiying wdevise methods of solving the nonlinear equations
arising in trying to optimally spproximate some characteristic of
the given acoustic noise fisld with the sirens. Still another
area worth looking into further is spectral brosdening by randomi-
zation of the sirens' pexranmeters.
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