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ABSTRACT

The report describes fundamental concepts inveolved in the
statistical analysis of multiple-input single-output time-invariant
linear systems. The definitions of a matrix frequency response
function and a multiple coherence function are presented. Also
discussed are marginal and conditional (partial) coherence func-
tions with emphasis on their interpretation.

Formulas for computing simultaneous confidence bands for
all elements of the matrix frequency response function are pre-
sented. Obtaining these confidence bands require the use of the
standard "F' distribution. Expressions for these confidence bands
are given both as a function of the various types of coherences and
of the elements of the spectral density matrix. The effect of the
various quantities onthe width of the confidence bands is discussed
in detail. Confidence bands for the gains and phases of the fre-
quency response functions are also developed.

The interpretation of linear system computational results
in terms of a time invariantnonlinear system model is described.
It is shown how the linear system results provide whatmay be
thought of as a ''best" linear fit to the nonlinear model. The
multiple coherence function then gives a quantitative measure of
goodness of this fit. In this sense the coherence function may be
used to provide a test for system linearity.
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p1+k(t)

LIST OF SYMBOLS

small frequency bandwidth of spectral analysis
extraneous noise variable
frequency variable

frequency response function between xj (t) and xk(t)

lxq matrix frequency response function [Hl(f), caes Hq(f)]

real part of Hk(f)

imaginary part of H.k(f)

‘\/_-T, imaginary unit

nonlinear time invariant operator relating input xk(t) with output y(t)
linear time invariant operator relating record xk(t) with xp(t)
number of effective degree-of-freedom in coherence estimate

N = BT, the number of degrees-of-freedom in the spectral analysis
where B = analysis bandwidth and T = record length. Many other
reports use the convention N = 2BT, double the value defined here.

Use care when comparing results.

total number of records (time series) in analysis, i.e., the dimension
of the multivariate random process

the number of input variables

cross-spectral density function of x.(t) and xk(t). Power spectral
density function when j = k. .

that part of x (t),

p1+k(1:) which is a linear functional of xl(t}, ‘e

k = l,...,p—pl

, X
Py

kth conditioned process, conditioned on xl(t), cens xp (t), k=1,....,p- P,

1

kth random process

random variable which is estimate of parameter x

transpose of x when x denotes a matrix
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" Sjk(f) ” matrix with elements Sjk(f)

e .
"S‘] (f) “ inverse of matrix " Sjk" with elements SJk(f)
2
Y. . . {f) multiple coherence function between variable
Jlizyesj-tijtl,. .. p x.(t) and variables X_(t), ..., x, .{t),x. .(t) (t)
j l g v s ny j_l ,xj+1 ,o“,xp

2
Yp' p-L,p-2,..., p1+l 1,2,..., P, multiple conditional coherence between xp(t) and

xp_ 1 {t), xp_z(t), e X (t} when conditioned on

P1+l
xlit), xz(t), .. .,xpl(t).
& (f) phase of H(f)

Z({f) pxp spectral density matrix. Elements are the
spectral density functions Sjk(f).

ij(f) submatrix of Z(f) when Z{f) is partitioned

z 41 12 ., (f) the conditional spectral density matrix of the
PyTlaeesaPllalaeien Py variables x l(t), .+, X% (t} conditioned on the
P1+ p
variables xl{t), vees xpl(t). That ig, the spectral

density matrix of the time series wp1+k(t),

lt:=1,...,p-p1

zxx(f) qx g spectral density matrix of input variables
xl(t), cas ,xq(t)
z (f) [2 (f)} qx1 [1 xq] spectral density vector of inputs
xy yx %) (th . 1%, (t) with output y(t)
z (t) l1x1 spectral density matrix of output y(t}
Yy [identically equal to Syy(f)]
Ey‘x(ﬂ the conditional spectral density matrix of an out-

put variable y{t) conditioned on the input vari-
ables xl(t), .o ,xq(t)

b -l(ﬂ inverse matrix of matrix Z{f)

b2 (f) the kth diagonal element of the matrix Z (f)
X} xx
kk . . -1

Z () the kth diagonal element of the matrix = (f)
xx XX
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1. THE MEASUREMENT OF THE VARIOUS TYPES OF COHERENCE

In measuring frequency response functions and in many other applications,
for example, measuring the kind and degree of relation between simultaneously
recorded vibration records, one is led to the problem of measuring coherences
of multiple stationary random functions (time series). There are various
types of coherences. Four types are discussed here. They are (a) multiple

coherence, (b) marginal multiple coherence, {c) conditional {or partial)

multiple coherence, and (d) marginal conditional multiple coherence. The

various types of coherence mentioned above are all particular functions of the
elements of a spectral density matrix of a multiple stationary time series.
(Formulas for the various types of coherence will be stated subsequently.)

A spectral density matrix of a multiple stationary time series is a function of
frequency f, and coherences are then also functions of frequency f. In speaking
of a spectral density matrix or a coherence, one is really speaking of a spectral
density matrix or a coherence at a particular frequency fO.

From finite length records (e. g., simultaneously measured vibration
records) that are regarded to be a finite length sample of a multiple stationary
time series, one computes in an appropriate manner sample spectral density
matrices corresponding to a collection of frequencies. To be more precise,
each sample spectral density matrix corresponding to a particular frequency fO
in reality pertains to a (usually) small frequency band of bandwidth B centered

at frequency f It is convenient, however, to speak of the sample spectral

0
density matrix at frequency fO'

The sample counterparts or estimators for the various types of coherences
mentioned above are obtained in the following manner. At a particular frequency

f0 , each sarnple coherence is the same function of the elements of the sample

spectral density matrix at frequency f, as the corresponding true coherence is

0
of the elements of the true spectral density matrix. Subject to certain hypotheses,



the joint distribution of the elements of a sample spectral density matrix has
been derived in closed form (Reference 1). Furthermore, it is demonstrated
in Reference 1 that if the frequencies corresponding to the collection of
sample spectral density matrices are spaced a suitable distance apart, the
sample spectral density matrices are essentially independently distributed.
(This necessary spacing is the analysis bandwidth B where B is defined in
a reasonable manner.) Since sample coherences are functions of the elements
of a sample spectral density matrix corresponding to a particular frequency,
sample coherences corresponding to different frequencies are also essentially
independently distributed if the frequency spacing mentioned above prevails.
With such a frequency spacing, the statistical uncertainty of sample coherences

may then be described separately at each frequency fo .



1.1 DEFINITION OF MULTIPLE COHERENCE
Formulas for ard interpretations of the types of coherence mentioned
above will now be stated.

Let xl{t), xz(t), ,xpl(t), xp _H(t),... ,xp +p {t} denote a

1 1 %2
P + P, = pth order multiple stationary time series possessing the p x p spectral

density matrix (at frequency f).

8, . slpl(f) :Sl'Plﬂ(f) <o 28 1)
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In Eq. (1) the element Sjk(f) of the matrix Z(f) denotes the cross-spectral
density (at frequency f) between xj(t) and xk(t) ; Gbok=1,...,p). A spectral
density matrix Z(f) is always Hermitian non-negative definite. It will be
presumed (for the present discussion) that the matrix Z{f) is positive

definite, and hence non-singular. Let

’ sty
5,6 | Z 20

st <50l = |----d-oomn 3
bZI(f) E zz(f)



where the matrices E“(f), Elz(f), ZZ

matrices of Z(f) indicated by the partitioning in Eq. (1}. Let

l(f), 2322(1:') in Eq. (2} are the sub-

= = || ™0 (3)

The multiple coherence at frequency { between xP(t) and [xl(t),xz(t), ,xp_l(t)]

is given by the formula

5 1
- 2 -1 {4)
R p 1,2, ‘e !p—l S (f) Spp(f)
PP

2
The multiple coherence Yp' 1.2 (f) ranges between zero and unity
3 1.

ap-1
and measures or describes the degree to which (at frequency f) xp(t) is

related to [xl(t), X, (t),... ,xp 1(1:)] by means of linear time invariant operators

ka, k=1,...,p-1 acting on xk(t), k=1,...,p-1 respectively. Stated another
way, y?;‘ 1.2 p l(f) measures or describes the degree to which (at

frequency f) the system diagram indicated below prevails.

In Eq. (5), Lpl’ L ., L denote linear time invariant operators.

L

p2 P, P-

A multiple coherence of zero indicates no such relation prevails; the larger

the multiple coherence is, the more nearly Eq. (5) represents the true

relation with such a relation prevailing perfectly as multiple coherence becomes

unity.



Since the subscripts on the x(t) may be regarded as arbitrary labels,
it is clear how Eg. {4) is a formula for other multiple coherences (at frequency f)}.
For example, the multiple coherence at frequency f between x,(t} and the

remaining (p-1) components of X, (t),... ,xp(t)} is given by

2 i )-1
. o £)=1-{s..tf) sM
YJ-1,2,...,3-1,J+1,...,p() (JJ” (£)

Since any submatrix of Z{f) which is symmetric with respect to the
main diagonal is a spectral density matrix (at frequency f) of selected com-
ponents of xl(t), X, (t),... ,xp(t), one may employ such submatrices to cormpute
other multiple ccherences. Such multiple coherences are termed marginal

multiple coherences or simply multiple coherences, when proper subscript

notation indicates which components are involved. For example, if one
considers [x {th,...,x (t)] then \(Z (f) is the multiple
1 Py P -1

'1,2,...,p1

1
coherence at frequency f between Xp (t) and [xl(t), R l(t)] . To com-
1 Py-

2
pute vy (f) one starts with the submatrix le(f) of Z(f) and

pl-l,Z,...,pl-l

suitably applies the formula given by Eq. (4). It is clear that the interpretation

of marginal multiple coherences is the same as that for multiple coherences.

1.2 CONDITIONAL (PARTIAL) COHERENCE
With respect to Eq. (l) there is a matrix computation that may be
performed on Z(f) to yield a spectral density matrix of smaller dimensions.

Such a smaller spectral density ma trix is called a conditional (or partial)

spectral density matrix. The formula for computing such a matrix and its

interpretation will be explained with the partitioning and submatrices appearing

in Eq. (1) and Eq. {2}



Consider the P, %P, Hermitian matrix defined by:
-1
R Ep1+l,...,pl,2,...,p1(f) = Ezz(f) ‘Ezl(f) 211 (f)zlz(f) (6)

Recall that Ezz(f) is a p,xp, matrix (where P, = p-pl), EZl(f) and Z}lz(f)
are p, XPp; and Py XP, respectively, and Ell(f) is P XP;- Since XZ{f) is

positive definite, it follows that Ep +1,...,pl.2,...,p {f) is positive

1 1
definite {and hence also non-singular}). Since Epl-l-l, el ... Pl(f) is a
P, %P, Hermitian positive definite matrix it could be the spectral density
matrix (at frequency f} of a pzth order multiple stationary time series
[wp +1(t), .o ,Wp(t)]. With respect to the discussion on multiple coherence of
the previous section, it is possible to represent the pzth order multiple

stationary time series [xp +1(t), e xpl+p2Ct)] in the following form:

xp1+l(t} = L11 xl(t) + LIZ xz(t) + ... +Llpl xpl(t) + wpl+1(t]

x +2‘(1:) = LZl xl(t) + LZZ xz(t} + ... +L2Pl xpl(t) + w 1_1_2(1:} {(7)
x (t}= L x (t}+ L x {t)+... + L x {t)+ w {t)
P1*P, Pt 1 Pt 2 PPy Py P)*P,

The interpretation of Eq. (7) is as follows. In Eq. (7), [Xl(t)’ v sx (),
Py

(t)] is the original p1+p2 = pth order multiple stationary

x {t),...x

p,*1 P*P,
time series of the previous section, The ij of Eq. (7) represent linear time
invariant operators. One furthermore has [wpl+l(t), R Wp1+p2 (t)],



a pzth order multiple stationary time series with each of its components

w +k(t), (k=1,..., pz), possessing at all frequencies f a multiple coherence

1
of zero with [xl(t), X, (t), ... ,xpl(t)] . The preceding property of the wp1+k(t)
may be explained roughly as follows. The components Wp +k(t), k=1,... Py

1

are the original components x t), k=1,..., P, with the linear '"effect! of the

pl+k’

remaining components xj(t), i=l, ..., Py subtracted out. Since the linear
"aeffect" between xp +k(t), k=1,... 3 and xj(t), i=l, ..., pl,ha.s been sub-

tracted out to obtain each wp +k(t), the multiple coherence between each
1

w +k(t) and [xl(t), . e (t)] is zero. The P,XP, spectral density matrix

X
P, Py

of [Wpl+1(t),. Ve s W +pz(t)] in Eq. {7) is given by Eq. (6).

P
The representation Eq. (7) is unique, and one may write formulas

expressing the frequency response functions ij(f) corresponding to the ij

in terms of the elements of the spectral density matrix Z(f) of Eq. (1). The

formulas for the frequency response functions ij(f) are not stated here since

they are not needed for the present discussion. However, let

v ty+... + L, x_(t)

+
p ] L x®* Ly, x,

v

1

L 1xl(t)+ L

2 xz(t) +... +L x  (t) (8)

pl+2 22

v
= L, % +1

xz(t)+... + L
2 2

.4
PP Py

From the discussion on multiple coherence of the previous section, it is clear

that [Vp +1(t), ce ,vp
1 1
with each of its components v

+p (t)J is a pzth order multiple stationary time series
2

b +k(t)’ (k=1,... ,pz), possessing at all
1



frequencies f a multiple coherence of unity with [xl(t), xz(t), ceey xp (t)] .
1

That is, by construction, there is a perfect linear relation between vp +k(t),
1
k=1,... P, and x.(t),j =1,... Py Now, from Eq. {8), one may write Eq. (7)
J
in the form (uniquely)
[~ b P"' r~
Xp +1{t) VP +l(t)-| wp +1(t)7
1 1 1
xpl+2[t) Vpl+2(t) Wp1+2(t)
= . + . {9)
x (t) v (t) w (t)
pl+p2 - - pl+p2 - - pl-{-p2 —

where the V component is perfectly coherent at all frequencies f and the

W component is perfectly incoherent at all frequencies £f, with [xl(t), .

’ xp
()

The conditional {or partial)spectral density matrix Z
(or p )sp Y P“""’pll’z"“'Pl

1
therefore is the P, X P, spectral density matrix of[xP +1(t), - ,xp1+P2(t)]
after subtracting from [xp . l{t), seeaX (t)] that part which is attributable

to the linear time invariant operators acting on [xl(t), ‘e ,xp (1:)] .
1

A conditional (or partial) multiple coherence is a multiple coherence

computed from a conditional (or partial) spectral density matrix, The formula
for a comditional spectral density matrix is given by Eq. (6); the formula for

a multiple coherence by Eq. (4). Appropriate identification of submatrices and
use of Egs. (6) and (4) enablée conditional multiple coherences to be determined

from Z(f) of Eq. (1).

] .



The following example illustrates the notation for conditional multiple

coherence. The multiple coherence (at frequency f) between x (t} and

[xp_l(t), cens xp1+1(t)] after conditioning on [xl(t), x, (thy... ,xpl(t)] is denoted

by sz-p-l,p-Z, . ’p1+1 ,1,2, el 1(f). To be specific, if a two input xl(t)

and X, (t), single output x3(t) , linear system is being analyzed then the multiple
conditional coherence between xl(t) and x3{t) conditioned on xz(t) is denoted

by yf_ 3 Z(f). This special case reduces to the ordinary (2-dimensional) coherence
between xl(t) and x3(t) after conditioning on xz(t) and is discussed in detail

in Reference 5 with a slight change in subscript notation. A conditional multiple
coherence measures or describes the degree to which (at frequency f} a com-
ponent xp(t) is related by linear time invariant operators to other components
xp_l{t), . ,xp +1(t) after "effects" due to linear time invariant relations with

other components xl(t), x, t),... ,xp (t) have been subtracted from
1

xp(t), xp_l(t), - ,xp1+1(t).

A marginal conditional multiple coherence is a marginal multiple

coherence computed from a conditional spectral density matrix. The previous
discussions on marginal multiple coherence and conditional multiple coherence
indicate how marginal conditional multiple coherence is to be interpreted.

The following example illustrates the notation for marginal conditional multiple
coherence. The marginal multiple coherence {at fiequency f} between xp(t)

and the components [xp_l(t), xp_z(t)] of [xp_ 1(t), xp_z(t), xp_3(t), ceas xp1+1(t)]

. 2
after conditioning on [xl(t),xz(t), - ,xp (t)] is denoted by ¥y

(£).
1;.-p.1,p_2,|1,2,...,p1

More specifically, if a three input [xi(t), i=1,2, 3] single output x4(t) linear
system is under consideration, then yzl. 4 2{f) is the marginal multiple
coherence between the input xl(t) and the output x4(t}. In this case the

conditioning is on let) and the third input x3(t) is effectively ignored.



1.3 THE DISTRIBUTION OF SAMPLE COHERENCE

From the above discussion on coherence and sample coherence it is
clear that {at a particular frequency fo) the various sample coherences
corresponding to the various types of coherence are, in general, different
functions of the elements of the sample spectral density matrix ﬁ(fo)
corresponding to the spectral density matrix Z(fo) of Eq. (1). (The hat "A "
notation will denote a sample[estimate] of the indicated guantity) The statistical
distribution corresponding to each type of sample coherence defined above
has been derived, and the results obtained in closed form. (See References
1 and 2. ) The statistical distributions of the various types of sample coherence
are, in general, different. That is clearly to be expected. However, the
probability density function of the distribution of the four types of sample

coherence defined above may be expressed by the following general formula:

Let
n = effective number of degrees-of-freedom,
p = effective number of records
2 1
Y = true coherence (10}
AL
Y =y = sample coherence

The probability density function of any type of sample coherence defined

above is then given by

I'(n)
I(p-1) I'(n-p+1)

(1-v") 24?72 (1-9)"P Fla, np-15v2y), (0< y <1)
(11)

2
Clyln,p, ¥y ) =

2
In Eq. (11), F(n,n;p-1;y y) is the hypergeometric function with the indicated
parameters and variables. The method of determining the parameters
2
n,p,y of Eq. (10) for the various types of sample coherences defined

previously is now described.

10



With respect to Eq. (11) let N = BT denote the effective number of degrees-of-
freedom of the spectral density estimator %(fo) of E(foj. For a sample multiple

coherence or a sample marginal multiple coherence n = N. For any sample
conditional coherence n =N - Py where Py denotes the number of components
that have been conditioned. For any type of sample multiple coherence, the
parameter p is given by the total number of components involved in the coherence
relation (not in general the total number of components of the multiple stationary
time series). The parameter yz is always the true value of coherence whatever

the type. Examples: With reference to Eg.{11) and the previous discussion

A2 2
a. For Yp- 1,2,... ,p-l(fO) onehas n=N, p=p, and y = Yp' 1,2,... ,p-l(fl)) .
' N2 _ _ 2 2
b. For ypl. 1,2,... ,pl-l(fO) one has n—N,p—pl, and y —ypl. 1,2,... ,pl-l(fO) .
f = - , = R
¢ For Yp'p—l,p-Z,... ,p1+1|1,2,... ,pl( 0) one has n = N Py» P=P,
2 2
and Y=Y {(f.) .

p-p-l,p-z,...,pl+1 1,2,...,pl 0

N2 N N
d. For Yp (fo) one has n = N-pl,p— 3,

‘p-1,p-2(1,2,... Py

2 2

= f
YP- p—l,P—Z‘l,z,--- ,pl(

and Y 0) .
For more concrete examples, assume a three input [xi(t), i=1, 2, 3] single

output, x4(t), linear system with N degrees-of-freedom in the measurements.

a. The sample multiple coherence between the output xé{t) and the

. \ AZ _ - 2_ 2
inputs is Y4, 1,2, 3(f) and one has n=N, p=4 and y = Y 4. 1,2’3(f).

b. The sample marginal multiple coherence between the input x3(t) and
the inputs xl(t) and xz(t) while ignoring the output x4(t) is 1\7% 1 z(f}

and one has n=N, p=3 and YZ = YZ3. 1 2(f)-

11



c. The sample conditional multiple coherence between the output x4(t)
he two i t) and x,(t) conditioned (t) is §° (£)
and the two inputs xz( } an X, (t) conditioned on x, (t} is Yy, 3,211

and one has n=N-1, p=3, and YZ = 'Y24_ 3. 2 l(ﬂ'

d. The sample marginal conditional multiple coherence between the
output x 4(1:) and the input X, {t) while conditioning on xl(t) and
2 2 2
ignoring xz(t) is I\>4_ 3|1(f) and one has n=N-1, p=2, and Yy =Yy Sll(f).

Tables of the cumulative distribution function corresponding to the
probability density function, Eq. (11), have been calculated for the parameter
p ranging from two through ten, and for n such that p <n <20{Reference 3}.
The rules for n and p described above may be applied in order to properly

make use of these tables.

12



2. THE MEASUREMENT OF MATRIX FREQUENCY
RESPONSE FUNCTIONS

Consider g time functions xltt), e ,xq(t) and a time function y(t)

related by the equation:

y(t) = L1 xl(t) + L2 xz(t) + ... + Lq xq(t) + e(t) . (12}

In Eq. (12) the Lk » k=1,...,q denote linear time invariant cperators
possessing corresponding frequency response functions H.k{f), k=1,...,q.
The function e(t) is presumed to be a zero mean stationary Gaussian random
function statistically independent of the functions xk(t), k=1,...,q. The
spectral density Se(f) of e(t) is presumed unknown. The frequency response
functions H.k(f), k=1,...,q are also presumed to be unknown.

Fquation (12) may be viewed as expressing the mulitiple-input single output

(with extraneous noise) block diagram illustrated below.

xl(t)-——-—-_... Hl(f) ——_"'Ll Xl(t

—p-y (t) (13)

x, {t) ————b] H, () |——p L

- *
-----------
-----------

----------

x o (t———sf H_(6) |—— L %

The 1 xq (complex valued) matrix
H(f) = [H1 ),...,H (f)] = [HIR(f)+iHlI(f), co Hop () inI(f)] (14)

is called the matrix frequency function of Eq. (12) or equivalently of the system

described by the block diagram.

13



2.1 FREQUENCY RESPONSE FUNCTION ESTIMATES
Suppose a single finite realization 0 gt £ T of the functions
xl(t), . ,xq(t), y{t) of Eq. {12) is observed (recorded). From the finite
length observed records of[xl(t), ‘e ,xq(t) s y(t)]simulta,neous confidence
bands for the elements of the matrix frequency response function H(fo) ata
particular frequency fO are to be determined. A discussion analogous to that
of Section 1 establishes that estimators for the matrix frequency response
function at a collection of frequencies are essentially statistically independent
if the frequencies are spaced suitably apart. Thus, with such a frequency
spacing, simultaneous confidence bands for the elements of the matrix
frequency response function H(fo) may be independently determined at each
particular frequency:O.
An estimator H(fo) for the matrix frequency response function H(fo)
is obtained in the following manner. The finite length (0 <t < T) of records
[xl(t), Pe ,xq(t}, y(t)] are treated as if they were a finite realization of a
(g+1)th order multiple stationary time series. Proceeding by the method of
spectral estimation (Reference 1) a (q+l)x{q+1l) sample spectral density matrix

at frequency fO

™ A l A
Exx(fO ) | Exy(fO)
. [
) = | TTTTTTT =TT (15)
& ) (£) |
— yx 0 , yy 0O

is then computed. It is presumed that the degrees-of-freedom parameter n
A
associated with E(fo) satisfies n 2 g+ 1. It is also assumed that the g x q
Fa) P
matrix Exx(fo) is non-singular. The estimator H(fo) for H{fo) is then

AL -1 A A A A A AN '
H (£, :%xx(fo) 2 ) E[Hl(fo),... , Hq(fo)Tz[HlR(fo)+1H11(f0},... ,ﬁqR(fO)thI(fo)] .

(16)

14



2.2 CONFIDENCE BANDS FOR MATRIX FREQUENCY RESPONSE FUNCTIONS

At frequency f_ the sample conditional spectral density of y(t) conditioned

on[x, (t),... ,xq(t)] -

) =% )-% )5 )8 «). (17)
ylx 0 yy O yx 00 xx" 0" xy O

Define the two quantities

A
=
yix

N
Afty) (£,)

B(fo)

1}

N ) A A 1
(H(fo) - H(E )| Z_(£,) (H(f.o) - H(fo)) (18)
As a special case of general results summarized in Refe}'ence 4, it follows
B{t)
n-qi. 0
5

that under appropriate hypotheses the quantity { possesses the

A,
standard F distribution with 2q and 2{n-q) degrees-of-freedom. The cumu-

lative distribution of

INTR By 1°°
0 L 2

(19)

ﬁ(fo) + Bir,) A,

is therefore directly and easily determined from the cumulative F' distribution.

Without going into hypotheses details, it is nevertheless important to mention
here that the hypotheses do not involve statistical distribution conditions on
the input functions xl(t), oo xq(t). For example, the input functions
xl(t), Ce ,xq{t) are permitted to be nonstationary or nonrandom, etc.

Given a probability (confidence level) Po (0 < Py < 1) one may then,
using the distribution result stated above, determine the corresponding unique

constant aO(O < a4 < 1) so that

A
A(fo)

= P, (20)

Prob [ao <

A A
At,) + Bl£,)
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From Eq. (18) and Eq. {20), using various algebraic results and inequalities
(Reference 4), the simultaneous confidence bands for all the elements of the

matrix frequency response function H(fo) stated below are obtained.

A = N A kk
[m ) - Bl < )z ) 8 e, )
Prob Hk 0 Hk 0"t~ ylx 0" xx 70 > p, 21)
k=1,...,q
In Eq. (21), g (f ) is given by Eq. {17) a.ndE (f }.k=1,...,q denote

-1
the indicated d1ag0na1 elements of the g x g ma.trlx Exx (fo) where the matrix

A
z i i i .{15).
XX(fo) is defined in Eq. ({15}

2.3 CONFIDENCE AS FUNCTION OF COCHERENCE
For the case where the inputs xl(t), cen ,xq(t) are stationary random
functions, it is desirable for interpreting and describing results related to
the measurement of frequency response functions to rephrase Eq.(21). From
. {15), = A (f } is the q x q sample spectral density matrix at frequency fO
of the rnult1p1e inputs x (t), ces ,x (t). Also from Eq. (15) one may regard

(f ) to be the g x g sample marg:.nal spectral density matrix of the (q+l)x{q+1)

sa.mple spectral density matrix %(f ) marginal on x (t), ve ,xq(t).

From Reference 1, the sample multiple coherence at frequency fO

i -1)i ‘o
between the input xk(t} and the other (gq-1) inputs xl(t), ’xk-l(t)’xk-f-l(t)’ ,xq(t)
is given by,

¥ ()= 1-12 ) 2 e ) @)
Y = 1- Flieesnq
Xk.xl"”"xk_l’xk'Fl""’Xq_ 0 xk . !

A

In Eq. (22), Ex . {f
Akk kk

xk(t) and Exx (fo) is defined at the conclusion of Section 2.2, From Eq. (22)

0) denotes the sample spectral density at frequency fO of

one obtains
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Kk 1
%xx (£ ) = ~ (23)

) 2 (f.)
k-l’xk+1""’xq X, F 0

e X

k' 1,--

Let QZ {f } denote the sample multiple coherence at frequency
A T AR ,xq 0

fo between the output y(t} and the q inputs xl(t), xz(t), - ,xq(t). On applying

n
the equation for sample multiple coherence (Reference 1) to the matrix Z(fo)

given by Eq. (15), performing the necessary matrix calculations and using

Eqg. (17), one obtains

AL (1 e £ ))% () (24)
yix 0 -Yy.xl,xz,...,xq(o yy' O

From Eqs. (23) and (24) one may write Eq. (21) in the form

1 =42 S €
-Yy'xl,x ...,xq 0 yy O

-|H(f)A(f)|2<—1—1 2’
ko'Hko -ao' (,\\{2 A )
Prob xk'xl""’xk-l’xk+1""’xkaxk 0
L k=1,...,q9) (25)

Equation {25} expresses the simultaneous confidence bands for all the elements
of the matrix frequency response function H(fO) in terms of the sample multiple
coherence between the output and all the inputs, the sample multiple coherence
between each input and all the other inputs, and the ratio between the sample
output spectral density to the sample input spectral densities.

From Eq. (25) one may discern how the various sample coherences,
sample spectral densities, and parameters gq and n govern the accuracy with
which frequency response functions are measured. One notes, for example,

that the accuracy with which frequency response functions are measured;
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- a. improves as the sample multiple coherence between the output
and inputs QZ (f ) increases toward unity,
e S SPRNIPE 0
1°72 q
b. diminishes as sample multiple coherences between inputs

increase,
c. improves as sample input spectral densities increase,

d. improves as the degrees-of-freedom parameter n increases
-1
(since for fixed Py and q the '"constant" (a0 - 1) diminishes as

n increases).

The distributions of the sample coherences appearing in Eq. (25) are

s AZ
given by Eq. (11). For Yy.x s X seee, X
12
ls p=q+l. Forthe sample coherences Qi . .« . &=l,.e0,q)
k 1’---’ k-l k+].| ye vy

the parameter p in Eq. (ll)is p = gq. In all cases YZ in Eq. (11) denotes

(fo) the parameter p in Eq. (11)

the true value of the respective coherences.

The simultaneous confidence bands on all the elements Hk(fo) (k=1,...,q)
of the matrix frequency response function H(fo) given by Eq. (25} are determined
by the sample frequency response functions, the sample coherences, and the
sample spectral densities appearing in Eq. (25). It is important to notice that
one requires no a priori knowledge of the frequency response functions, the
coherences, or the spectral densities to determine the confidence bands on the
elements of the matrix frequency response function H(fo} in using Eq. (25).

One may also use Eq. (25) as a guide in planning measurement programs
or experiments to determine the elements of a matrix frequency response function
H(f). When that is done, a priori estimates or knowledge of sample coherences
and sample spectral densities expected to be obtained are substituted in Eq. (25)
and the results yield apriori estimates of accuracies with which the elements

of a matrix frequency response function H(f) will be determined. If one is

18



limited to only measuring the inputs and output one is then only able to estimate
the degrees-of-freedom parameter n {or alternatively the lengths of record and
frequency resolutions) needed to approximately achieve desired accuracy in
measuring frequency response functions. If one, say in some experiment, is
able to control or select the inputs to some degree more may be achieved. In
that regard, the previous remarks (on how coherences and spectral densities
govern the accuracy with which frequency response functions are measured)
become especially helpful. For exarple, one would, if possible, select inputs

that are incoherent with each other,

2.4 CONFIDENCE BANDS FOR GAIN AND PHASE
In most applied work one customarily expresses frequency response

functions in terms of gains and phases. From Eq. (25) simultaneous confidence

bands on all the real parts, the imaginary parts, the gains, and the phases of
the frequency response functions H.k(fo), k=1,...,q, may be obtained. With
reference to Eq. (25}, let

-8 )| S )
2y =t S 9 . k=1,
k' 0 0 Al A
(lﬁYxk-xl, coXp Xy preee X )E (fo)
- R
(26)
Furthermore, let
H (£) = H g (6) + i (6) zjm |, a0 en
and A
A A i
B ) = f ot +ifl ) 2|8 e L et @8

Equation (27) defines the real parts I—[kR(fO), the imaginary parts H'kl(fo)’
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the gains I H.k(f )' , and the phases ¢ (f ) of the frequency response functions
H'k(f ), k=1,... ,q Equation (28) def1nes the sampleAreal parts HkR(f ), the
sample ga1ns| H.k(f )| the sample imaginary parts Hkl(f ), and the sample
phases ¢k(f0) of the frequency response functions Hk(fo), k=l,...,q. Consider

the diagram sketched in Figure 1 below.

ﬁ ) - H
kR( 0)

Figure 1. Confidence Band Diagram

A
In drawing the diagram of Figure 1, it is presumed that ?k(fn) < lHk(fO)l.
One h

e has 2

A% () = Arc sin-——k--g)— (k=1 ) 2
k 0 - F ] - :---sq (9)

|8, )|
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From Eq. (25), Figure 1, and the various defining equations above, one obtains

the simultaneous confidence band statement:
[ A £ £ £ AT RN )
H gl - : o) S Hplfy) s Hplf) +7) (£)

A
He ) - ?k(fo) H ) < HkI(f )+ 2 1 o)

Prob

v

Py {(30)

| Bep - Bt <l <|B el 2

IA) F N A "
b () - AR (£)Sé (£) <& (£)) +AP (£ )

- {(k=1,...,q) J
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3. THE APPLICATION OF
COHERENCE FUNCTIONS TO NONLINEAR MULTIPLE-INPUT
SINGLE-OQUTPUT TIME INVARIANT SYSTEMS

Consider q time functions xl(t), . ,xq(t) and a time function y(t)

now related by the equation:

y(t) = K1 xl(t) + K2 xz(t) +... + quq(t) (31)

In Eq. (31} the Kk » k=1,...,q denote time invariant operators here not
(necessarily)linear. The operators Kk s, k=1,...,q are presumed to be
unknown. Equation (31) describes a multiple-input single-output (possibly)
nonlinear time invariant system.

Suppose a single finite realization 0 <t < T of each of the functions
xl(t), R ,xq(t), y(t) is observed (recorded). Suppose furthermore that the
finite length (0 <t < T) of records [xl(t),. - ,xq(t), y(t)]are treated as if
they were a finite realization of a g+1)th order multiple stationary time series.
Proceeding by the method of spectral estimation of Reference 1, a (q+1)x(q+l)

sample spectral density matrix at frequency fo

T A | T
€)1 2 )
Be) = | —-mm-mTm—mm - (32)
l Fa
_%yx(fo) | 2,60

may then be computed. It is presumed that the degrees-of-freedom parameter
A
n associated with %(fo) satisfies n > q+l , and that the qxgq matrix Zxx(f

o
is nonsingular.

The reader will note that the {possibly) nonlinear time invariant system
described by Eq. {31), in general, may be different from the linear time
invariant system described by Eq. (l2). The reader will, however, also

~n
note that from the sample spectral density matrix E(fo) of Eq. (32) one may
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formally compute all the sample entities described in Section 2. The topic
that is now briefly discussed is the relevance, interpretation, and usefulness
of such sample entities in relation to a multiple-input single-output {possibly)
nonlinear time invariant system described by ¥£q. (31).

In the present discussion it is presumed that [xl (t),... ,xq(t)] are
multiple stationary random functions. Since the operators Kk, k=1,...,qg
are time invariant, it follows that [xl{t), .o ,xq{t), y(t)] ari also multiple
stationary random functions. Furthermore, it follows that Z(fo) of Eq. (32)
is then an estimator of the (g+l)x(q+l) spectral density matrix Z(f) of
[xl(t), S ,xq(t), y(t)] at frequency f0 . Even though y(t) is determined
by xltt), cen ,xq(t) in the (possibly) nonlinear manner described by Eq. (31},
there is an interpretation that enables the relation between y(t} and
xl(t), ceo ,xq(t) to be described by the block diagram illustrated by Eq. (13).
Stated another way, one may write Eq. (31) in the form of Eq. (l2) provided
one properly defines Ll’ ey Lq and e(t) of Eq. (12) in relation to Eq. (31}
Since [xl(t), e ,xq(t}, y(t)]are multiple stationary random functions, there

exists a unique decomposition of y(t) where

y(t) = y () +y_(6) (33)

In Eq. (33), yL(t) is the part of y(t) that is related to xl(t), . ,xq(t) by

the equation

yL(t) = L1 xl(t) + L2 xz(t) ...+ Lq xq(t) (34)

where the L k=1,...,q in Eq. (34) denote linear time invariant operators

k ¥
possessing corresponding frequency response functions Hk{f), k=1l,...,q.

In Eq. (33), ye(t) is the part of y{t) that is multiply incoherent with

xl{t), ves ,xq(t). If the (q+1l)x{g+1) spectral density matrix of [xl(t), . ,xq(t), y(t)]
of Eq. (31) is
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)z |~—=-=—-r -~ (35)

|
r—
h
—
—_—— -
™
—
L
——

then the H.k(f) corresponding to the L k=1l,...,q, of Eq. (34) are given

k’
by

o) =[m @, 0 0] =2 03 0 (36)

From the preceding discussion one then has the block diagram (13)
holding for Eq. {31) where H_k{.f), k=1,...,q are given by Eq. {36) and
e(t) of Eq. (13) is replaced by ye(t) = y(t) - yL(t). Cne has ye(t) multiply
incoherent with xl(t), ces ,xq(t). From Eq. (33) one may interpret ye(t)
to be that part of y(t) of Eq. (31) that is unaccounted for by the linear time
invariant operators Lk’ k=1,...,q of Eq. (34) that ""best" approximate
y(t) by acting on the inputs xl(t), .o ,xq(t). In summary, one is able to
write Eq. (31) in the form Eq. (12} provided e(t) of Eq. (12} is replaced
by ye(t). In Section 2, eft) was presumed to be a zero mean stationary
Gaussian random function statistically independent of the input functions
xk(t), k=1,...,q. Here, y'e(t) is a random function multiply incoherent of
the input functions xk(t), k=1,,..,q. The applicability of the results of
Section 2 to describing {or approximating) nonlinear time invariant systems
by linear time invariant systems therefore dependes on how the differing
properties of ye{t) and e(t) affect the results of Section 2.

Generally speaking, the sample entities of Section 2 maintain their
relevance, interpretation, and usefulness. For example, Eq. (16) for
?I' (fo) in the possibly) nonlinear context of this section is now interpreted
to be an estimator at frequency fO for the matrix frequency response

function H' {f) of Eq. {36). The sample multiple coherence sz-x x (fo)
12 e Xy

at frequency fo between the output y(t) and the q inputs xl(t), cou ,xq(t) is
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)s

now interpreted to be an estimator of the multiple coherence y; Xyeeesx (fo
i.e., an estimator of the degree to which the output y(t) at frequency fO icfls
related by linear time invariant operators to the q inputs xl(t}, v ,xq(t).
The remaining question concerns the applicability of the sampling
distribution and confidence band results of Sections 1 and 2. The output y{t)
of a time invariant nonlinear system is, in general, a non-Gaussian random
function even if the inputs xl(t), ‘e ,xq(t) are multiple stationary Gaussian
random functions. The sampling distribution and confidence band results of
Sections 1 and 2 are based on Gaussian theory prevailing in the frequency
domain. The computation of the sample entities of Section 2 inherently involves
"narrow band frequency filtering." An important result often observed in
practice is that many stationary non-Gaussian random functions become nearly
Gaussian when so "filtered.'" Thus, one may expect the distribution and
confidence band results of Sections 1 and 2 to be approximately valid for
many multiple stationary non-Gaussian random functions. In that regard,
one may expect the sampling distribution and confidence band results of
Sections 1 and 2 to be in many cases approximately applicable to the method
of studying nonlinear systems described above.
The reader will note that the methods of this section indicate how a
(possibly) nonlinear time invariant system may be (a) approximated by a
linear time invariant system, and(b) provide a measure (sample multiple
coherence) of how accurate (at each frequency fo) such a linear time invariant
system approximation is. The methods of this section may therefore also
be roughly used to test the hypothesis that a time invariant system is linear.
The general idea is that a time invariant system capable of being suitably
approximated by a linear time invariant system may for many practical

purposes be regarded as a linear time invariant system.
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