

VOL. I

HNICAL REPORT 56-393

ASTIA DOCUMENT No. AD 97150

PROCEEDINGS OF THE OSU-WADC **RADOME SYMPOSIUM**

THOMAS E. TICE **ROBERT FOUTY**

OHIO STATE UNIVERSITY

AUGUST 1956

This information is furnished upon the condition that it will not be released to another mation without specific authority of the Depart-ment of the Air Force of the United States, that it will be used for military purposes only, that individual or corporate rights originatin in the information, whether primted or not, will be respected, and the Build of the provided substantially the same degree of security and the Department of Defense of the United States.

WRIGHT AIR DEVELOPMENT CENTER

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified requesters may obtain copies of this report from the ASTIA Document Service Center, Knott Building, Dayton 2, Ohio.

Copies of WADC Technical Reports and Technical Notes should not be returned to the Wright Air Development Center unless return is required by security considerations, contractual obligations, or notice on a specific document. WADC TECHNICAL REPORT 56-393 VOL. I ASTIA DOCUMENT No. AD 97150

PROCEEDINGS OF THE OSU-WADC **RADOME SYMPOSIUM**

THOMAS E. TICE ROBERT FOUTY

OHIO STATE UNIVERSITY

AUGUST 1956

ELECTRONIC COMPONENTS LABORATORY CONTRACT No. AF 33(616)-3212 PROJECT No. 4158

WRIGHT AIR DEVELOPMENT CENTER This AIR RESEARCH AND DEVELOPMENT COMMAND UNITED STATES AIR FORCE WRIGHT-PATTERSON AIR FORCE BASE, OHIO

Carpenter Litho & Prtg. Co., Springfield, 0. 500 - October 1956

r corporate rights originating not, will be respected, and that y the same degree of seturity e of the United States. 2 for Depart will not nsed the pe it that ic authori H States, that not. OL patented or no substantially Defense the patent of the Department 1221 perovided er OF ormation is furning to another nation the Air Force of purposes only, the formation. wheth be information it by th inf the infor released JO afforded military

in the

ment

FOREWORD

This report was prepared by Dr. Thomas E. Tice and Mr. Robert Fouty of the Ohio State University, Columbus, Ohio, on Air Force Contract No. AF 33(616)-3212, under Task No. 41547 of Project No. 4158, "Radome Techniques and Components." The work was administered under the direction of the Electronic Components Laboratory, Directorate of Research, Wright Air Development Center, with Lt. William Croswell and Mr. Fred H. Behrens acting as task engineers.

WADC TR 56-393, Vol I

-

LAR SAN

This report is one of four containing the papers submitted for the 1956 Radome Symposium held at the Ohio State University, Columbus, Ohio. The papers contain technical information pertaining to the design, fabrication, and testing of radomes for ground and airborne use.

PUBLICATION REVIEW

The publication of this report does not constitute approval by the Air Force of the findings or the conclusions contained therein. It is published only for the exchange and stimulation of ideas.

FOR THE COMMANDER:

FRED C. SCHMADT, JR.

FRED C. SCHWIDT, JR. Lt. Colonel, USAF Chief, Electronic Components Laboratory Directorate of Research

TABLE OF CONTENTS

VOL. I

MICROWAVE RESEARCH

	MICROWAVE RADOMES FOR USE WITH EXTREME BAND- WIDTHS, Donald H. McClure, Samuel S. Oleesky, (Zenith Plastics)	Vol. II
	A STUDY OF BROADBANDING TECHNIQUES, Arthur H. Webber, (McMillan Laboratory, Inc.)	Vol. III
	A POLARIZING, REINFORCED, BROAD-BAND ANISOTROPIC PANEL, H. S. Kirschbaum, (Ohio State University)	1 - 9
	THE DIELECTRIC TENSOR OF ALTERNATING-LAYER MATERIAL WITH APPLICATION TO HONEYCOMB AND BROADBAND RADOMES, Jack Kotik, (Technical Research Group)	10 - 13
	STREAMLINED LENS-RADOMES, Alan F. Kay, (Technical Research Group)	14 - 21
	THE BROADBAND CHARACTERISTICS OF MULTI-LAYER RADOMES, Walter G. Cox, (Brunswick-Balke-Collender Company)	Vol. II
	AN INVESTIGATION OF MULTILAYER PANELS WITH THE AIM OF DESIGNING A BROADBAND BORESIGHT DOME, G. Tricoles, (Convair)	Vol. II
	LUNEBERG LENS SIMULATION IN A RIPPLE TANK, N.L. Walbridge, L.A. Woodward, (University of Vermont)	28 - 32
E	LECTRO-OPTICAL DESIGN	
	AN ABSORBENT MATERIAL FOR USE IN RADOMES, R.W. Wright, (Naval Research Laboratory)	Vol. II
	ON SCATTERING BY A THIN DIELECTRIC RING, Lloyd L. Philipson, Donald E. Adler, (Hughes Aircraft Company)	Vol. II

	A RADOME AND ITS CORRECTION TO A BORESIGHT		_
	DOME ON A PRODUCTION BASIS, David A. Cope (Convair)	Vol.	п
	BORESIGHT PREDICTION TECHNIQUE, Paul I. Pressel, (Goodyear Aircraft Corporation)	33	10
	EXPERIMENTAL STUDIES ON DEPENDENCE OF BORESIGHT ERROR ON VARIOUS OBSTACLE PARAMETERS, V.M. Galindo, D.E. Adler, (Hughes Aircraft Company)	Vol.	п
AF	ERODYNAMICS, STRUCTURAL, ENVIRONMENTAL DESIGN		
	BUCKLING CRITERIA FOR SANDWICH SHELLS, W. Zophres, (Zenith Aircraft)	41 - 1	50
	A DESIGN NOTE ON HONEYCOMB SANDWICH CONSTRUCTION, Melvin Mark, (Raytheon Manufacturing Company)	51 - 1	56
	Manufacturing Company,	JI - 1	00
	TEMPERATURE CALCULATIONS AND SOME LABORATORY AND FLIGHT-TEST METHODS USED TO EVALUATE FALCON RADOMES, J.H. Beno, E.F. Smith, R.W. Quint, (Hughes Aircraft Company)	Vol.	п
	RAIN EROSION OF RADOME MATERIALS AT SUPERSONIC SPEEDS, W.L. Dittman, (Convair)	Vol.	п
	RESULTS OF RADOME MATERIAL INVESTIGATIONS FOR HIGH MACH NUMBER GUIDED MISSILES, Ralph O. Robinson, Jr., A. L. Robertson, (Johns Hopkins University)	Vol.	п
	PHOTOGRAPHS OF SOME EFFECTS ON RAIN DROPS OF SHOCK WAVES PRODUCED BY 60-CALIBER AND 20-MM PROJECTILES, F.G.P. Seidl, (Beeing Airplane Company)	57 -	82
	THREE DIMENSIONAL ERROR PREDICTION, George M. Hahn, (Dalmo Victor Company) and Edmund J. Pinney (University of	01 -	54
	California)	83 -	88
	RADOME RAIN EROSION TESTING BY MEANS OF SUPER- SONIC SLEDS, Chester L. Smith, (Raytheon Manufacturing		
	Company)	89 -	109

vi

LARGE GROUND RADOMES

	LARGE RIGID RADOME DESIGN, Hadley F. Morrison, (Zenith Aircraft)	110 -	116
	RIGID RADOME DEVELOPMENT, J.A. Vitale, D.G. Bagley, P. Davis, S.L. Hensel, P.G. Knowles, E.B. Murphy, (Massachusetts Institute of Technology)	Vol.	п
	LIGHTWEIGHT AIR SUPPORTED RADOME MATERIALS DEVELOPMENT, D.E. Setter, (Phillips Chemical Company)	117 -	127
	THE "PARABALLOON" ANTENNA - AN AIR SUPPORTED, PARABOLIC REFLECTOR FOR MICROWAVE ANTENNAS, J. W. Currie, H. L. Jackson, S. H. Saulson, (Westinghouse Electric Corporation) and W. W. Bird, (Birdair Structures, Incorporated)	Vol.	ш
	MILITARY REQUIREMENTS FOR AIR SUPPORTED RADOMES AND ANTENNAS, John M. Barreto, (Rome Air Development Center)	Vol.	ш
	SECTIONALIZATION TECHNIQUES FOR MOBILE AIR SUPPORTED RADOMES, H. L. Jackson, J. W. Currie, S. H. Saulson, (Westinghouse Electric Corporation), W. W. Bird, (Birdair Structures, Incorporated), J. L. Briggs, (Rome Air Development Center).	Vol.	п
	DESIGN OF AIR-SUPPORTED RADOMES FOR MOBILE EQUIPMENT, Harold H. Strauss, (Hughes Aircraft Company)	Vol.	п
R	ADOME GOALS		
	DEVELOPMENT GOALS FOR RADOMES FOR LONG-RANGE BOMBERS, M. J. Kofoid, (Boeing Airplane Company)	Vol.	п
	LONG RANGE INTERCEPTOR MISSILE PROGRAM, Frank S. Holman, (Boeing Airplane Company)	Vol.	п
	RADOME GOALS FOR THE PILOTED INTERCEPTOR PROGRAM, Harold O. Wendt, (Convair)	Vol.	ш

WADC TR 56-393, Vol I

vii

	RADOME DESIGN GOALS AS INFLUENCED BY THE HIGH ALTITUDE RECONNAISSANCE VEHICLE PROGRAM,	
	E.L. Korb, (North American Aviation, Incorporated)	Vol. III
	UNIFIED ANTENNA RADOME DESIGN, F.H. Behrens, (Wright Air Development Center)	Vol. II
	FUTURE TACTICAL BOMBER RADOME REQUIREMENTS, V. Landis, Jr., (Douglas Aircraft)	128 - 131
	THE EFFECT OF COLLIMATION ERROR ON PROPORTIONAL NAVIGATIONAL SYSTEMS, D. Mayers, (Hughes Aircraft Company)	132 - 137
R/	DOME MATERIALS AND FABRICATION	
	DEVELOPMENT OF A VERY HIGH TEMPERATURE RADOME, Irving M. Ziff, (Zenith Aircraft)	138 - 140
	MATERIALS PROBLEMS IN AIRBORNE RADOMES DESIGNED FOR HIGH SPEEDS, R. A. Spurr, G. D. Robertson, (Hughes Aircraft Company)	141 - 150
	QUALITY CONTROL OF REINFORCED PLASTICS RADOMES (FROM DESIGN THROUGH PRODUCTION), Haig Haydoistian, Malcom D. Hudson, (Hughes Aircraft Company)	Vol. II
	PROCESS SPECIFICATIONS, Fred T. Brewen, (Zenith Aircraft)	151 - 160
	QUALITY CONTROL OF REINFORCED PLASTICS STRUCTURES, Robert W. Matlock, (Zenith Aircraft)	161 - 165
	CERAMICS AS BASIC ENGINEERING MATERIALS, E.J. Smoke, J.H. Koenig, (Rutgers University)	166 - 169

RADOME TEST METHODS

DEVELOPMENT OF TOOLING AND PROCESSES FOR FABRICATING LARGE HIGH-ACCURACY RADOMES,	
R.H. Vreeland, (Hughes Aircraft Company)	170 - 185
THE MEASUREMENT OF PHASE DELAY ON DIELECTRICS AT MICROWAVE FREQUENCIES, E.H. Gross, E.J. Luoma,	
(Wright Air Development Center)	186 - 189
ELECTRICAL THICKNESS MEASUREMENT BY A SINGLE- HORN METHOD, H.R. Hope, (Hughes Aircraft Company)	190 - 196
HIGH TEMPERATURE DIELECTRIC AND LOSS TANGENT MEASUREMENTS, G. Richard Blair, (McMillan Laboratory, Incorporated)	Vol. II
A NON-DESTRUCTIVE TEST METHOD FOR SANDWICH STRUCTURES, Robert W. Matlock, (Zenith Aircraft)	197 - 202
THE INFLUENCE OF LARGE IN-FLIGHT TEMPERATURE CHANGES ON THE ELECTRICAL DESIGN OF MISSILE RADOMES, Edward B. McMillan, (McMillan Laboratory,	
Incorporated)	Vol. II
DEVELOPMENT OF A NONDESTRUCTIVE TEST FOR GLASS-REINFORCED PLASTIC LAMINATES,	
A. J. Schwarber, Jr., (Battelle Memorial Institute)	203 - 216
AUTOMATIC BORESIGHT MEASURING EQUIPMENT, John B. Damonte, Al Gaetano, (Dalmo Victor Company)	217 - 226
CONSTANT PHASE AND CONSTANT TRANSMISSION	
CHARACTERISTICS OF "A" SANDWICH PANEL RADOMES, W.F. Croswell, (Wright Air Development Center)	Vol. II
A SURVEY OF SOLID WALL RADOME CONSTRUCTION MATERIALS, Norman B. Miller, (The Glenn L. Martin	
Company)	Vol. II

WRIGHT AIR DEVELOPMENT CENTER

WADC RADOME RESEARCH AND DEVELOPMENT PROGRAM, Eino J. Luoma, D. H. Cartolano, (Wright Air Development Center)	Vol. II
RADOME SURVEY	
Office of Naval Research	227
Bureau of Aeronautics	227
Naval Air Development Center	227
Hughes Aircraft Company, Antenna Department	227
Hughes Aircraft Company, Plastics Department	229
John Hopkins University	Vol. II

WADC TR 56-393, Vol. I