FOREWORD

This report was prepared by Midwest Research Institute under USAF
Contract No. AF 33(616)-7058. The contract was initiated under Project No.
7360, "The Chemistry and Physics of Materials," Task No. 736002, "Nondestructive
Methods." The work was administered under the Directorate of Materials and
Processes, Deputy for Technology, Aeronautical Systems Division, with Mr. R. R.
Rowand acting as project engineer.

This report covers work conducted from 1 February 1961 to 31 January
1962.

The work was performed under the direction of Mr. Fred Rollins, Jr.
Personnel directly involved in prosecution of the research have been Messrs.
Jerry Jones, Donald Kobett, Neil Abbott, James Gravitt, Paul Gutshall, and
Phillip James.






ABSTRACT

The study of stress-induced birefringence has been continued in both
polycrystalline and single crystal experiments. The effect is explained on the
basis of nonlinear elasticity theory. Experiments indicate that dislocation
activity does not strongly affect results in polycrystalline specimens, however,
a pronounced influence may be observed in single crystals.

Nonlinear elasticity theory has been used to investigate the inter-
action of two intersecting, plane, elastic waves in a homogeneous, isotropic
medium. A criterion for the occurrence of a strong scattered wave has been
derived. The criterion is formulated as a relationship between the second
order elastic constants of the material, the angle between the intersecting
wave vectors, and the ratio of primary wave frequencies. The amplitude of the
scattered wave is found to be proportional to the volume of interaction and
dependent on the third order elastic constants of the material. Preliminary
efforts to experimentally verify the theoretical predictions are described.
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I. INTRCDUCTION

In recent years considerable effort nas been directed toward the de-
tection and measurement of regidual stresses. Most of the methods that have
been successfully developed are destructive or semidestructive in nature. These
methods, in general, are based on the fact that relieving the stresses will al-
ter the dimensions of the body. BSuccessive sections of the test piece are re-
moved by chemical or mechanical means ard the strain relaxation that occurs in
the remaining material is measured. The stress distribution is then calculated
from the strain distribution found in the metal specimen.

The only nondestructive method that is successfully used in measur-
ing residual stresses is one which utilizes X-ray diffraction techniques. Even
this method has a number of disadvantages. Good accuracy is obtained only with
specimens that yield sharp diffraction lines. Quenched steels or cold worked
metals give diffuse lines that produce very large errors. An even greater lim-
itation is that only surface stresses can be investigated using this method.

During the past two years Midwest Research Institute has been engaged
in a study of the stress-dependent aspects of ultrasonic propagation in solid
materials. It is hoped that the results of this study may facilitate the ap-
plication of ultrasonics to specific residual stress problems. An earlier re-
portl/ covers the first year's work and should be consulted for experimental de-
tails that have been intentionally omitted in the following discussion.

I1. STRESS-INDUCED BIREFRINGENCE

A. General Discussion

It has been recognized for some time that the velcocity and attenua-
tion of uwltrasonic waves traveling through solid materials are usually stress-
dependent. The exact nature of these stress-dependent changes is not completely
understood but recent advances in dislocation theory and finite elasticity can
explain many of the experimental observations.

A property that we have studied in several solids is the stress-in-
duced double refraction of megacycle shear waves. In a rectangular coordinate
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system, let us consider a shear wave traveling in the x-direction. If the ma-
terial is isotropic, we will find that the shear wave wvelocity is independent
of the direction of particle motion. However, if we remove the isoiropy by
applying a tensile stress in the y-direction, the velocity is found to vary
with the direction of particle motion. Under these conditions it is impossible
to propagate a plane polarized shear wave except when the particle motion is
either parallel cr perpendicular to the applied stress. Referring to the above
two velocities as Vgy and Vgo respectively, we can define a fracticnal ve-
locity difference, (AV/V) = (V51-Vgp)/¥ , where ¥V is an average of Vg1 and
Voo The vzliue of AV/V can be determined experimentally using & simple pulse-
echo technique.i It has been well established that the AV/V values are
stress-dependent and, in fact, vary linearly with the stress level. The cor-
relation between theory and observation 1s described in the following twe sec-
tions.

B. Predictions Based on Theory of Finite Strain

The velocities of longitudinal and shear waves 1n an isotropic, homo-
geneous medium are usually given by the following expressions:

= JA2u -
v -y — » Vg —h]% (1)

wvhere X and J are the second order Lame constants and p is the density.
These expressions are derived on the basis of infinitesimal deformations. They
do not predict a stress-dependent velocity so long as the density remains con-
stant. However, by using the finite strain method of Murnaghan,g Hughes and

Kellyé calculated the velocities of ultrasonic waves in isotropic media and
obtained the stress-dependent expression shown below:

(a) For hydrostatic pressure, p

Longitudinal wave pOVE = {2u+r) -~ %E |10M+7l+6£+4mi (2)
2
Shear wave Va = p - £ [3(2,+\ )+ -
PoVg = 1 3K [ (2u+A }+3m 5 i (3)



(b) Uniaxial Pressure, P , and wave propagation both in x-directicon

Longitudinal wave pOV% = (2p+X) - gﬁ (Eil (10u+4k+4m)+1+2£] (4}
2 . A
Shear wave Vs = b gﬁ.[4(u+h) + ZEn + ﬁ] (5)

(c) Uniaxial Pressure, P , in x-direction with wave propagetion in y-
direction

Longitudinal wave poV% = (2p+r) - g_K [21, - E?t (2p+k+m):| (6}
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In these expressions, pg is the density of the undeformed medium, K is the
bulk modulus and the terms £ , m , and n are referred to as third order
elastic constants. The latter give an indication of the nonlinearity in the
elastic behavior of a material. It is easily seen that when the hydrostatic
pressure or uniaxial stress is zero the expressions all reduce to the two ex-
pressions given in (1).

The three third order constants that appear in expressions (2)-(8)
can, of course, be determined experimentally by accurately measuring the ve-
locity changes produced in at least three independent cases. It is possible
to independently determine the third order constant, n , by a simple fechnique
that does not necessitate the accurate measurement of absclute velocity. When
shear waves are sent through a specimen in a direction that is perpendicular
to the direction of an applied uniaxial stress, expressions {7) and (8) in-
dicate that the velocity depends upon the particle motion direction. The in-
itially isotropic material becomes birefringent. Pure shear waves can be
propagated in this case only when the particle motion is either parallel or



perpendicular to the applied load. If we subtract expression (8) from (7) and
remember that K = 1/3(2u+31) , we get

2 2 r
PeV51 - PoVs2 = - i-‘; [0 ] (9)

Since Vgy + Vgpo = V4 , We then have

[2wn] (20)

Vo - = T -
51 - Vae BpgVor. i

or expressed as a fractional difference

'UT— = AV/V ] —-—P—E—"— Lépﬁn:’ = - —E“é' [‘.’t}.{."'n] (ll)
o'ot Bu

From {11} we see that the fractional difference between Va1 and Vgo is a
linear function of the uniaxial stress, P . Note also that experimental deter-
mination of AV/V at a glven stress is sufficient to evaluate the third order
constant, n .

The velocity of ultrasonic waves in single crystals is als¢e stress-
dependent, but the velocity expressions are somewhat more involved due to the
loss in symmetry. Seeger and Buck?/ have derived the differential equations
for wave propagation in cubic crystals that have superimposed finite stresses.
There are six third order elastic constants for such crystals and Bateman
et al.,§ have recently used ulirasonic techniques to evaluate all of these
constants for germsnium. The velocity expression given in Ref. 5 for a shear
wave traveling in the [poi] direction with particle motion parallel to a [ll@
pressure is as follows:

DV” = (l+Y+G'B)C44 J"[-_(d-“"B)/{‘::] 014:4 + [(OL+B+2'Y)/4] 0166

+ [(a-B)/;_l C456 (12)



For a shear wave traveling in the same direction but with particle motion per-
pendicular to [ll(ﬂ s the expression is

oV = (1+¥43-0)Cqy + [(a*B)/8] Cyqy + [(arp+2%) /4] c156
+ [(B-0)/4] casp - (13)

In the above expressions o , B , and Y are all linear functions of the ap-
plied stress and the cijk terms are the third-order moduli. By using the
approximation (V,, + V, ) =2V , the fractional velocity difference for shear
wave propagation in the [iOQ] direction becomes

Vi -Yl_&_ P
v N 2
8044

(4C44+C456) . (14)

Here again we see that the fractional velocity difference is a linear functior
of the uniaxial stress F .

It should be emphasized at this point that the above expressions,
(2)-(8) and (12)-(13), were derived for a perfectly elastic material. For most
rezl materials, an applied stress will produce some anelastic strain in addi-
tion to the elastic strain. Granato and LickeB:7/ have developed a theory of
energy losses and modulus changes that are due to dislocation damping. The
theory is based on the model of a dislocation loop oscillating under the in-
fluence of an applied stress. Without going into the details of this theory,
it is sufficient to state that the fractional velocity change due to the dis-
locations is proportional to the dislocation density and the second power of
the dislocation loop length. There is considerable experimental evidence that
supports the Granato-Licke theory and there is no question that dislocations
do afTect the propagation of ultrasonic waves. Additional discussion of this
subject may be found in the following section.

C. DBExperimental Results

The pulse~echo techniquei/ has been used to measure stress-induced
changes of (AV/V) in a variety of materials. Figure 1 shows some typical
curves and confirms the linear relationship between (AV/V) and stress level.
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It was mentioned previously that the (AV/V) measurements might be used to
evaluate the third order elastic constant, n . Ve see from Eq. (11) that a plot
of (&V/V) versus stress should yield a straight line with a slope of
—(4u+n)/8u? . The slopes of the curves shown in Figure 1 have, therefore,

been used to caleulate n for each material and the results are summarized

in Table I.

TABLE I
Material n (psi)
6061-T6 Aluminum -(45.2 ¥ 1.8) x 108
1100-F Aluminum -(69.2 £ 5.5) x 106
C1018 Steel -(83.1 % 4.4) x 108
Fused Silica -(33.2 * 0.9) x 106

It would be interesting tc compare the values in Tsble I with those obtained
by other workers but we have been unable to find any third order data on these
specific materials.

It has been previously reportedi/ that (AV/V) for C1018 steel
varies linearly with elastic strain but is relatively insensitive to plastic
strain. This result suggests that the dislocation activity,which occurs in
the plastic range, must affect Vg; and Vgp by nearly equal amounts. Thus,
(Vg1-Vgp) remains essentially unchanged. The variation of (AV/V) during
elastic and plastic deformation has more recently been studied in specimens
of 1100=F aluminum. The results have been very similar to those for steel.
Figure 2 presents data for a specimen of 1100-F aluminum both before and after
yielding. The first data were taken during the initial loading cycle. The
specimen was then loaded beyond the yield point until a strain of approximately
0.2 per cent was reached and then the second set of data was taken. The maxi-
mum-minimum type pulse echo patterns, which are used in evaluating (AV/V) ,
change continuously as the load varies but they do not appear to vary with time
at constant load. However, if the transducer is rotated so that the particle
motion is parallel or perpendicular to the compression, an exponential decay
pattern is obtained and the attenuation is very time-dependent immediately fol-
lowing load changes. The time-dependent variation in attenuation is apparently
due to dislocations that break away from impurities and/or vacancies when the
stress is varied. These point defects then diffuse through the lattice and
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repin the dislocations as the load is held constant. In contrast, the lack of
time dependence in the stress-induced birefringence together with the agreement
between pre-yield and post-yield values provide a strong indication that dis-
locations have little effect on birefringence measurements in polycrysialline
steel or aluminum.

e have also studied stress-induced birefringence in single crystals
of high purity aluminum and sodium chloride. The results have been similar to
those obtained for polycrystalline specimens but somewhat less reproducible.
There is an additional effect which one may encounter in working with single
crystals and that is internal conical refraction. This effect occurs when shear
waves travel through a crystal in a direction that is not exactly parallel io
a specific crystal direction. Pure shear waves, for example, can travel through
a cubic crystal in the Iio@] direction and the velocity is independent of the
polarization angle. If, however, the propagation direction is slightly mis-
oriented with respect to [}00 , then internal conical refraction may occur.
Waterman and Teutonico=/ have shown that this effect can produce pulse-echo
patterns exactly like those used to evaluate stress-induced anistropy. Precise
orientation of the single crystal is very important then in shear wave studies,
particularly at high frequencies. The technique of Walker and co-workers?
was used to orient and grind the mechanical faces of the specimen parallel to
a desired crystal face. Subsequent hand lapping was necessary to attain the
even more stringent requirements on parallelism between opposite surfaces. For
pulse-echo work at frequencies between 10 and 100 me. the parallelism should
be maintained to within 0.00005 in/in.

In addition te the problems outlined above, the single crystal experi-
ments were influenced strongly by dislocation activity. In both aluminum and
sodium chloride the shear waves were sent through the crystal along [iO@]
while compressive loads were applied in the [boi] direction. As the external
stress was applied to aluminum the (AV/V) values were observed to be both
stress dependent and time dependent. Upon loading the specimen (AV/V) first
increased and then part of the increase was lost as time progressed at constant
load. The equilibrium value, reached after a few minutes, was proportional to
the applied load. When the load was removed, (AV/V) momentarily increased
again, but then decreased with time to the no load value. The equilibrium
value after loading, however, was usually higher (indicating increased aniso-
tropy) than prior to loading.

In similar experiments on sodium chloride crystals the (AV/V) values
were more reproducible and less time dependent than for aluminum. The varia-
tion is procbably due to the different slip systems found in the two materials.
The primary slip system for aluminum is along {(111) planes whereas sodium



chloride slips along (110) planes. For pure shear waves traveling in a
[10@] direction there is no resolved shear stress across (110) planes but
+there is a resolved stress across (111) planes. Thus, we see that a [100
shear wave could interact with the many (111) dislocations in aluminum and
yet exhibit no interaction with the (110) dislocations in sodium chloride.
A change in (AV/V) due to dislocations would only arise, however, from an
anisotropic change in the distribution of dislocations. Such anisotropy is
highly probable in single crystals where slight changes in the direction of
stress application can activate more dislocation activity on some primary slip
systems than on others.

IITI. ULTRASONIC BEAM INTERACTION IN SOLIDS

A. Theory

The nondestructive measurement and analysis of a three-dimensional
stress distribution is a difficult problem to contemplate. It is obvious that
1o succeed in this task one must monitor some property that is stress sensi-
tive and must also localize the volume elements within the test specimen which
affect the property being measured. ltrasonic waves show some promise of
being successfully applied to this problem. In addition to certain stress-
dependent aspects, ultrasonic waves can be collimated into well defined beams.
The intersection of two collimated beams can be used to define a reastnably
small volume element within a relatively large metsal specimen. Beam inter-
action or scattering at the point of interaction might be related to stresses
at the point of intersection. Vhether or not the beam interaction is stress
sensitive is secondary, of course, to whether there is a detectable beam inter-
action at all.

If one considers beam interaction based on linear elasticity theory
it is easily shown that the separate waves can each exist independently of the
other, i.e., they do not interact. However, if the basic expression of elastic
energy is extended to terms cubic in strains the equations of particle motion
then contain quadratic terms in the displacements. The independent nature of
the intersecting waves no longer holds and the theory admits the possibility
of interaction between waves. An analysis of wave interaction in nonlinear
solids has been completed during the past year and the results are encourag-
ing. A rather detailed description of the analysis is given in the Appendix
so the results will be only briefly summarigzed here.

The analysis considers the interaction of two waves in a homogenous,
isotropic solid. The results indicate that for a given material there does

10



exist an angle of intersection between two waves of frequencies W and Up
which produces a "resonant" interaction. Under resonant conditions the analysis
indicates that scattered waves (with frequencies uﬁ_iu@) originate at the
"point" of intersection. The analysis further predicts the direction of par-
ticle motion as well as the propagation direction of the scattered vwave. The
resonant angles of intersection and the directions of propagation for the
scattered waves are summarized in Table II of Appendix I, p. 26.

Some calculations have also been made on the amplitude of the scat-
tered wave. The amplitude is found to be proportional to the volume of inter-
action and also dependent on the third order elastic constants of the material.
A numerical example, based on data for polystyrene, indicates that the dis-
Placement amplitude of the scattered wave is not beyond the realm of detection.
Nevertheless, the intensity of this wave will undoubtedly be small and optimum
conditions must be obtained if detection is to be expected.

B. Preliminary Experiments

Experimental efferts to verifly the wave interaction predictions are
still in the preliminary stages, but a description of the initial experiment
is included here. The only case that has been examined experimentally is the
interaction of two transverse waves. From Table II of Appendix I, we see that
the scattered wave in this case has a longitudinal mode and a frequency of
(ml + w2) . The table also indicates that the angle for resonant interaction
is

¢ = arc cos {02 + [(02-1) (a2+1)/23;| ]’

and that the direction of the scattered wave is (K1¥Eé). We see, then, that
the resonant angle depends only on the transverse to longitudinal velocity
ratic, C , and the frequency ratio, a , of the two primary waves. Thi direc-
tion of the scattered wave is determined by the propagation vectors, K; and
ﬁ% ; Of the primary waves. It is further shown, in the numerical example of
Appendix I, that the amplitude of the scattered wave is a maximum when W o=

Wy . Under these conditions, a wave of frequency 2w 1is predicted to emerge
in a direction that bisects the angle between the two primary waves. The anal-
ysis also indicates that the two primary transverse waves should both be po-
larized either parallel or perpendicular to the (R&, R%) Plane.

11



A schematic of the interaction experiment described above is shown
in Figure 3. The specimen was machined with the shape of an isosceles tri-
angle - the angle between the equal sides being cut so the two primary waves
would interseet at the resonance angle, ¢ . The scattered wave should then
travel normal to the third side of the triangular specimen. The two transducers
used to generate the primary waves were both 5 mc., AC-cut quartz crystals.
The receiving transducer was a 1lO0-mec,x-cut crystal. The figure depicts the
ultrasonic wave packets after they have passed through the volume of inter-
action and the scattered wave is just arriving at the receiver crystal. The
electrical signal from the crystal is fed to an amplifier tuned for 10 mc.,
and the amplified signal drives the vertical deflection plates of a cathode
ray indicator.

The transmitting crystals were first excited simultaneously with a
single 5-mc. signal from one pulse generator. Experiments were also performed
using two pulse generators. The two generators were triggered at the same time
but the frequency of one could be varied slightly. This procedure was used to
possibly compensate for slight errors in both theory and experimental arrange-
ment that could cause the angle @ +to be in error. The compensation, of
course, was expected from changes in the frequency ratio (w)/mp) which affects
the angle, ¢ .

Judicious placement of the three crystals facilitates the detection
of the scattered wave by making it possible to distinguish the desired signal
from multiple reflections of the primary waves. From simple gecmetrical con-
siderations, it is easy to calculate the time of travel necessary to bring the
primary transverse waves to the intersection zone and the additional time re-
quired for the scattered longitudinal wave to travel to the receiver crystal.
It is then only necessary to use a scope with a calibrated sweep to localize
the desired signal. Multiple reflections of primary waves will arrive at the
receiver crystal much later than the scattered wave.

The interaction of two transverse waves has thus far been studied
only in fused silica and polycrystalline magnesium. We have not yet been able
to detect the predicted longitudinal waves, but several changes are being made
to optimize variables and increase sensitivity. An increase in the amplitude
of the primary waves and additional amplification of the received signals are
possible. Different specimen materials will be investigated to optimize non-
linear parameters. It is also desirable to operate at higher frequencies be-
cause the analysis indicates the amplitude of the scattered wave is dependent
upon the third power of the primary wave frequency. This factor, of course,
must be weighed against the increase in attenuation that occurs at the higher
frequencies.

12
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Apparatus is also being assembled for the study of interaction be-
tween one transverse wave and ore Jongitudinal wave. This case has cne advan-
tage over the transverse-transverse case in that the longitudinal wave can be
coupled into solid specimen through a ligquid. This mekes it much easier to
continuously vary the interacticn angle, ¢ , and thus optimize the resonant
condition. A complete investigation of the interaction phenomena will include
numerous experimental arrangements using both pulsed and continuous wave tech-
niques.

Iv. SUMMARY

The study of stress-induced birefringence has been continued in both
polycrystalline and single crystal experiments. The effect is explained on the
basis of nonlinear elasticity theory. Experiments indicate that dislocation
activity does not strongly affect results in polycrystalline specimens, however,
a pronounced influence may be observed in single crystals.

Nonlinear elasticity theory has also been used to investigate the
interaction of two intersecting, plane, elastic waves in a homogeneous, iso-
tropic medium. A criterion for the occurrence of a strong scattered wave has
been derived. The criterion is formulated as a relationship between the first-
order elastic constants of the material, the angle between the intersecting
wave vectors, and the ratio of primary wave frequencies. The amplitude of the
scattered wave is found to be proportional to the volume of interaction and
dependent on the third order elastic constants of the material. Preliminary
efforts to experimentally verify the theoretical predictions are described.
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APPENDIX I

THE INTERACTION OF EIASTIC WAVES IN AN ISOTROPIC SOLID

I. INTRODUCTION

In the linear theory of elasticity two eiastic waves do not interact.
The equations of motion are linear and therefore the principle of superposition
holds. Any solution of the equations of motion can be written as a linear com-
bination of monochromatic waves. The linear theory of elasticity results from
assuming the elastic energy to be quadratic in the particle displacements. If
terms cubic in the particle displacements are included in the elastic energy,
the equations of motion become nonlinear.ig/ This nonlinearity gives rise to
an effective interaction between two plane elastic waves which can produce
scattering. The scattering of two collimated, monochromatic, plane waves in
an infinite isotropic sclid is considered in the present paper.

II. THEORY

When terms cubic in the particle displacements are included in the

elastic energy, the resultant nonlinear equations of motion for an isctropic
solid areld/

azui Beul 2
At Xy dX z?’xl
2 > 2
(utA/4) a u, Buz . s} u, aui .\ o uy auz
OXpdXy dX§  OXpdXy X, Ox 3%y 3%y

®u, du 3%u,  du,
+ (knp/oafer) (| b T4 K 1)
Bxiaxk axk szaxk axz

2 2 2
o™i, ou ) du o“u, 3
5 Yy e
* (K-2/su){ = 3 L)J' (A/4+B) 3 . 3 az 3
KkOXy axjaxk X4 X;0X) 9X,

Bzuk du,
BXiaxk -B-x_f' (I—l)

+ (B+2C)
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where Po = density of the undeformed solid
uy = ith component of the particle displacement
K = compression modulus
i = shear modulus.

4, B, and C are third order elastic constants, i.e., they are the coef-
ficients of cubic strain terms in the elastic energy. Subscripts appearing
twice in a single term indicate summation over the values 1, 2, 5. The terms
X] 5 Xo , and X3z are rectangular coordinates.

The left side of Egq. (I-1) is linear in 1 while the right side is
quadratic. In practical applications the displacement vector 1 is small and
therefore the right side of Eq. (I-1) will be small compared to the left. To
solve Eg. (I-1) we set T = UWC+3°% where UC is the solution when the right
side of Eq. (I-1) is zero, and ®©5 is a presumably small correction arising
from the right-hand side. ﬁo being a solution te the linear equation consists
of a superpositicn of monochromatic waves. Since we are interested in the
mutual scattering of two waves we take

el

i, = A, cos (wlt-il » )+ ﬁo COS (met—ﬁg < 7). (1-2)

In Eq. (I-2) the amplitude vector may be chosen either parallel or perpendicu-
lar to the wave vector X , that is, the primary waves are either longitudinally
or transversely polarized. For a transverse wave w = C¢k where

1
L i
Cy = (1/py)2 . For a longitudinal wave w = Cyk vwhere C, = [ (K+4 M/E%/;O]E.

Now to solve Eq. (I-1) we substitute o = #°+U® on the left side
and © = U on the right side. This should be a good approximation if Tg
is small compared to O . Since U° is a solution of the linear equation
it disappears from the left side and we obtain

azuj Beui aeui
- - (K+ ,/3) —Z = p. T
P " e (k+ 1/3) royrandl 1 (1-3)
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where the vector B is determined by putting U, in the right side of Eq.
(1-1). If we use Eq. (I-2) for #° , P will involve a sum of products of
two monochromatic waves, Some of the terms will represent the interaction of
a primary wave with itself. This interaction has been treated vefored/ and
we shall not include it here. Including only those terms representing inter-

actions between the primary waves we find for T after some tedious manipula-
tion

3(2,£) = T sin {(wl+w2)t-(-ﬁl+§2) : ?}

(1-4)

Hy

+ T~ sin {(ml-wg)t-(ilJﬁe) .

where

T
ol

= -3 (n/e) { (BB )i ko Yoy * (BB, (ky -y D

(Boriey Migp-lip By # (Rgekp iy - VB2 (R Ko )iy - Ko )B,

+

-+

2(B, Ky Yy o g - 3 (/3 + /2 +B) {(ByrBo) (i ko i

(RoeBo ) () -Kp JEy + (Bprip )iy ko o ¢ (Roeky )iy Ko )5, |

1+

3 (0/a8) { Ryt (Boip iy 2 (R )(Boeky dip + (BprBp) Bk D

1+

- A = - - - = -
(Aookg)(Bo-kl)kl}- % (B+2C) {(Ao-kl)(Bo-kg)kg

1+

o) B |

Since P is a known function of # and t , Eq. (I-3) is now a linear in-
homogeneous equation for the scattered wave 48 , with P acting as a source
term. Instead of writing Eq. (I-3) in component form we prefer to use vector
notation and write
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aeﬁs = 2 S5 -5 7.5 o
L (@) - & {7.88@,0)] + Eand® (@) = sma@t)  (15)
ot

P
where 4mg = 2,
o

o

This is the standard form for the inhomogeneous vector wave equation.y From
now on we shall be interested only in the scattered wave sp we shall drop the
superscript =& until further notice. We introduce the time Fourier transform
pairs

+o
aF,w) =/ WIS (F, ¢ )at
+; .
a(r,t) = %;r- f e-lwtﬁ(i",w)dw ’
-+ .
a(r,w) = f "3z, t )at
-
+m
a(r,t) = ?2“? f e 17 w)dw . (1-8)

From Eq. (I-5) the equation for the Fourier transform is
- weﬁ(f,m) - Ci'? {V-ﬁ(f,w)}*' C%?x‘?xﬁ(?,w) = 4na(T,w) . (1-7)

Fron Eq. (I-4) and Eg. (I-6) one finds that

RPN T+ -1 .E +A T i (kx +i .
a(r,w) = I%J“{E 1 1*ko) ré(w+wl+w2) - el(kl+k2) r&('w-wl-wg)}
[

_—I\;{e-i(il_ie).?

4ipo

i(k, -k, )-F
6'(w+wl—u)2) ce b “2 é(w-wlﬁug)} (1-8)

+
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where 6{(a) =0 for a#£0

6(a)

Il

o for aq =0

/ s(a)da = 1 .

Now Eq. (I-8) is not quite right. We are interested in the case
where the primary beams are well collimated., The interaction term @ , which
is a product of the amplitudes of the primary beams, will be zero unless we
are in the region where the primary beams intersect. We shall dencte both
the region of intersection and its volume by V . Then Eq. (1-8) is valid
only inside V and @ is zero outside V .

If one assumes that U(F,w) decreases at least as fast as % for
T

large r , then it can be shownll/ that the solution for Eq. (I-7) in the
infinite region can be written as

(7, w) =/ G(¥,F'w)d(r',w)av (1-9)
v

vhere G 1is a tensor or dyadic operator. For the infinite region, G can
be writtenll/

G(#,7',0) = %5 G,y (F,81,0/Cy) + %5 G (7,77 ,0/C) . (1-10)
£ t

In Eq. (I-9) the term arising from Gy, will be longitudinal, while
the term arising from Gy will be transverse. In dyadic notation G, and
Gt are given byll
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I w o qi&R
1-i U R 3-i — R- 3 R c
. ¢ 22 c, & i
' _ i3 ER L 2 e
G, (T, r",w/C,) = |[I| m—2 |- = -
fr £ o o R ) (I"-Ll)
W g2 R Qi R
2
“ %
- 2 2
[14) . W
1-i %— R- 55 R L %— R- EE RPN | 1 E;'R
Gt(f,;',w/Ct) = - I t t + B"R_ t t =
@F o2 R2 W’ 2 R
= R CI
%% ¢t ,
- B (1-12)

where R = P-T' (Figure 4) and R = |R| and I 1is the unit dyadic.

We now choose T so large that

w/CR >> 1, w/Cg R>> 1 (1-13)

for a1l %' in V . If in addition f?'! << ]?| we have

>
4

(1-14)

where £ is a unit vector in the direction of ¥, i.e., T = #/r . With
these assumptions we can simplify Eg. (I-11) and Eq. {I-12). Firstly, we keep
only the leading terms in (w/C,)R and (o/Cy{)R . Secondly, we replace R
by r-£.#t in the expcnentials and R by r elsevhere. We obtain

. W
1 =—7r - A
I AA B C‘E "t CZ r.r'
Gz(r,r',w/cﬂ) =rr S e s (1-15)
r
i .l-.— r '
Ct -i g"‘ Q“f'
Gy (.87, 0/cy) = [1-£2] & —e (1-16)
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Now using Egs. (I-15) and (I-16) in Eq. (I-10) we can find G and
using G in Eq. (I-9) with g given by Eq. (I-8) we can find %(F,w) . Then
from Eq. (I-6) we can get (¥,t) . The result of this straightforward but
tedious procedure is

a(r,t) = Lil rfs:m{ wl+w2

4ﬂC£po

i"-—\l-fk2> T - (“’l+w2)(€'; -t) av

i

("-*)r (“’1 eﬁa=>
+ s1n — r-k S L { (= -t} av
4nC£po { C w2 172 (. )

E

, I fr__g_)__f Sm{( 2 83 ‘i“e) B (u,l+w2)(z—t— -t) av

4nCtpor

——(T—I—)— f sin (-—— ¢ kl+k2) BT - (wl-w;)(gc—; ) pav (117

4nCtp r

The first and second terms in Eq. (I-17) are longitudinal waves with the
sumned frequency wy+twp and the difference frequency wy-Wp , respectively.
The third and fourth terms are transverse waves with the summed and difference
frequencies, respectively,

The terms in the arguments of the sine function involving (% -t

do not vary during the °?¥' integration. Now look at the first term in
(I-17). As we integrate over 7' the integrand oscillates with frequency
ul+w2
Cy
In general, the result of this integration will depend on just how the waves

fit into the region V . As we increase V the value of the integral will
oscillate between fixed limits, unless we can find a direction %s for which

determined by the coefficient of ¥F' , i.e., kl-k2 in this case.

wytw - A
L 72 p K-k =0 . (1-18)
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If we can find such an ?S » the integrand becomes constant for
2= Fs and the amplitude of the scattered wave in this direction becomes

proportional to the volume of interaction V . By increasing the volume V
one can indefinitely increase the amplitude of the scattered wave in the di-
rection fs + In any other direction the amplitude does not increase in-

definitely with volume but oscillates. For the proper choice of experimental
parameters this will lead to scattering which is sharply peeked in one direc-
tion and whose amplitude is proportional to the volume of interaction. We
shall call this part of the wave the scattered wave as opposed to the rest of
the outgoing wave which has the character of a diffracted wave. Equation
(I—18) will be called the resonance condition. We have so far considered only
the first term in Eq. (I-17); however, the character of the remaining three
terms is the same as that of the first. The resonance conditions for the
remaining three terms are, respectively,

bt Na™ T
C£ isS - (kl-ke) =0

W4 +w

1+ s o

o 5 - (Eprkp) = 0

&y =W Y

1 20 - (B)kp) =0 .
Cy

IIT1. INTERACTION CASES
Three cases of interaction between two intersecting waves must be
considered, namely,
1. Two transverse waves.
2. Two longitudinal waves.
3. One transverse and cne longitudinal wave.

We shall consider the case of two transverse waves in detail by wey of example.
The results for all three cases are given later in Table II.
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For the case of two transverse waves we have

_ = A (..'Jl (-92_
Ao.kl:BO.k2=0 and E]_E=kl’a't——k2 .

We want first to see if the resonant condition Eq. (I-18) can be satisfied.
We: must have

P
<Cz = kI + kg + ek‘l-k2

or

2

, e e .
((Dlﬂ.de) _ Wy . W N 2(91(.)2 cos ©
C - o )
2 cf cf cf

vhere ¢ 1is the angle between El and ig . The above leads to

2 L +
Ccos @ = --1—; — -1 J_l + U_2 .
% C\}E U.)l

In order that this equation be satisfied we must have the right side less than
one and greater than minus one. This leads to the condition that

1-Ce/Cy  wy  1¥C /Ty

T7c./c, <y < 1°C./C,

For any wl/u2 in this range we can choose the angle ¢ between the primary
wave vectors kl and kg so that we get a scattered wave (appearing in the
direction of kl+k2) If one examines the resonance conditions for the last
three terms in Eq. (I 17) it turns out that ncne of them can be satisfied for
this particular choice of primary waves. For the scattered wave then, we have
from Eq. (I-17) only the longitudinal wave
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(T.r)?
4”0290 T

a(1,t) = -2 ¥V sin (w1+u2)(t r/Cz) . (1-19)

Using the fact that K&-ii = ﬁo-ﬁg =0 in this case we have from
Eq. (I-4)

1" = - 3 (n+a/4) {(Ao’ﬁb)(kggl+kgfé) + (BooKp) (RBroky -Kp) A,

-

. (R, kg)(k2+2k 3 )Bo} -1 (K}u/3+A/4+B)(Ko.ﬁo)(kl.ﬁg)(ﬁe+il)

- %— (A/4+B) (Eo'iQ) (ﬁo'-ﬁl) (-122"'?1)

The amplitude of the scattered wave depends on the polarization of
the primary waves. If one primary wave is polarized perpendicular to the
k;,k; plane and the other is polarized in the %,k plane, then I*.}, =0
and there is no scattered wave even though the resonant condition is met. IT
both primary waves are polarized perpendicular to the 'Ei,ﬁé plane the scat-
tered wave amplitude is

oV“l

T 16ﬂp T

( ) [ -(uta/a) [(a +1)(c2-1)+a(a+1){c +l)‘|
CeCy

- (K+yu/3+A/4+B) [ce(Sce—l)(a+a2)+c2(c2-l)(a3+l)] } (1-20)

where a 1s the frequency ratio wz/wl and c_ is the velocity ratio Ct/Cﬂ .
If both primary waves are polarized in the kl,k2 plane the scattered wave
amplitude is similar in form to Eq. (1-20). 1In fact, the scattered wave ampli-
tudes for all three general interaction cases are of similar form. Since these
amplitudes may be cobtained from straightforward expansion of the terms in Eqg.
(I-17), they will not be included in the present paper. The general character
of Eq. (I-20) will be discussed in a later section.

It remains to consider the case where both primary waves are longi-

tudinal, and the case where one is longitudinal and one transverse. Complete
results are given in Table II. For the case of two longitudinal waves, the
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resonant condition can be satisfied for the fourth term of Egq. (I-17) only.
For the remaining case the resonant conditions can be satisfied for the first,
second, and fourth terms. In this latter case of interaction between a longi~
tudinal and a transverse primary wave, the amplitude of the longitudinal scat-
tered waves vanish when ﬁo is polarized perpendicular to the plane of

ﬁl,ié . The transverse scattered wave has finite amplitude for any polariza-
tion of B .

The appearance, in Table II, of scattered waves with the difference
frequency Wy~wo requires some comment, Treatment of the interaction problem
has been on a strictly classical basis in this paper. The classical treatment

is an approximation to the correct Quantum Mechanical treatment. A macroscoplc

plane elastic wave consists of the presence of a very Jarge number of phonons
of a particular (long) wavelength in the erystal. With this in mind one can
do the following calecuwlations:

1. Write down the phoncn Haemiltonian for the crystal including the
first term giving phonon-phonon interaction.

2. Assume that at t = O , there are a large number of phonons with
wave vectors ‘il and kp and energies Hwy , Ao .

3. Assume that first order time dependent perturbation theory is
valid and compute the state of the system at some time ty later than t =0

If one does this calculation the following points appear. Due to
the structure of the phonon-phonon interacticn there is conservation of the
phonon wave vector (no Umklapp processes are possible if the initial wave-
lengths are viry ilong). That is, a phonon of wave vector kl and one of
wave vector ko, can produce, in interaction, only phonons of wave vector
§3 :'il+§2 + The second point is that if t; is not chosen too small, the
perturbation theory gives only energy conserving transitions, that is, we
must also have %oz = hosthwy . These conditions on the wave vector and
energy taken together are equivalent to the resonance condition from Eg.
(I-18). A troublesome point is, however, that this calculation seems to indi-
cate that a scattered wave with the difference of the primary frequencies can-
not arise, in contrast to the classical calculation which permits a scattered
wave of either the sum or difference frequencies, It is therefore not clear
to us whether or not the difference frequency waves will actually be prcduced
in an experiment. Since the validity of the assumptions made in both ealecula-
tions is somevwhat of an open question, it is difficult to make a more definite
statement at the present time.
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IV. BEAM WIDTH OF SCATTERED WAVE

The scattered wave given by Eq. (1-17) appears in the form of a
conical beam with vertex at the interaction zone and maximum intensity along
the direction of the vector 95 . In experiments aimed at detecting the scat-
tered wave it would be advantageocus to minimize the spread of this beam. The
parameters which determine the angular width of the beam may be identified as
follows.

Congider the first term in the right-hand side of Eq. (1-17). The
amplitude of the integral is equal to the volume of interaction V when
* = ?S . We seek here the vector ?o for which the amplitude first becomes
zero (or a minimum) as ? moves away from ?s . This occurs when one full
cyclie of the wave is fitted into V , or in other words, when the cocefficient
of T' is approximately equal 2ﬂ/£ , & being a length characterizing the
volume of interaction. It follews that the angular width of the beam is
proportional to hs/ﬁ where M\g 1s the wavelength of the scattered wave.
Thus the scattered beam will be narrow when Ag << £ . For the case we are
considering Ag 1is inversely preportional to wytwp so the width of the
scattered beam may be made smzll by using large primary frequencies and/or
a large interaction volume.

When the other terms in Eq. (I-17) are considered, the same propor-
tionality to hs/ﬂ is obtained. However, for the second and fourth terms,
Ag 1s inversely proportional to wy-wo, which suggests that in general a
scattered wave with the difference fredquency will be mcre spread out.

V. NUMERICAL EXAMPLE

We use a numerical example to illustrate the previous resulis.
Choosing polystyrene for the elastic medium we have2

A = 2.89 x 1010 dynes/cm2
p o= L.38 x 1610 dynes/cme
K = 3.81 x 1010 dynes/cm®
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A¥ = -1,00 x 1011 gymes/cm?
B = -8.3 x 1010 dynes/cn®
C = -1.06 x 1011 aynes/cm?

p, = 1.056 gn/cm?

Taking again the case of two transverse primary waves we find that resonance
can be obtained for

0.338 < a < 2.955 .

Since the two primary waves are the same type, we may without loss of gener-
ality choose w] > wp vhich restricts a +to the range

0.338 <a 1 .

The smallest angle ¢ between the primary waves for which a scattered (reso-
nant) wave is obtained is 120.8 degrees corresponding to a =1 . As a de-
creases, ¢ approaches 180 degrees.

If both primery waves are polarized perpendicular to the 'ﬁl,fQ

plane, the scattered wave amplitude Eq. (I-20) is largest for a =1 . We
then obtain

Amp. (max.) = 10.32 x 10718 4 B Vei/r cm.

(when Ap, Bg, and r are in centimeters, V in cubic centimeters and w3
in radians/sec). As a decreases, the amplitude passes through a minimum at
a m 0.583 and we find that

Amp.(min.) = 7.45 x 10-18 AoBoVwﬁfr cm.

¥ The ccrrelation between the elastic constants £ , m, and n given in
Ref. 3and A, B, and C used here is: A=n , B = m—3n , C = L-m+in.
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Clearly, the amplitude is more sensitive to the primary wave freguencies
characterized by w; , than to the frequency ratio.

B Iet us further evaluate the interaction in polystyrene of two 10-
megacycle waves with a volume of intersection equal to 1 cme If the displace-
ment amplitude of the interacting waves is approximately 10-10 cm. and we let
r = 10 cm., then the displacement amplitude of the scattered wave is calculated
to be approximately 10" cem. By maintaining the same volume, frequency, and
observation distance, we see that the amplitude of the scattered wave varies
as the product of the primary wave amplitudes. Thus, the difference between
the amplitudes of the primary waves and the scattered wave decreases as AO
and B, get larger. If we use the unreasonably large value of 10-6 em. for
A, and Bg (this corresponds to a strain amplitude of about 10-3 in the above
example), then we find that the amplitudes of the intersecting and scattered
waves are of the same order of magnitude.

VI. CONCLUSIONS

Two intersecting plane elastic waves produce a scattered wave when
the resonant condition (Eq. (I-18)) is satisfied. The resonant condition is
a function of the ratio of the primary frequencies but is independent of the
absolute frequencies. The scattered wave appears in the approximate form of
a conical beam emarating from the volume of interaction and has maximum in-
tensity along the directiom ?s defined by the resonant condition. The width
of the beam is proportional to Ag/f where Xg is the wavelength of the
scattered wave and £ 1is a length characterizing the volume of interaction
V . The maximum intensity of the scattered wave is greatest for high primary
frequencies, large primary wave amplitudes, and large interaction volume.

In an experiment aimed at detecting the scattered wave, the distance
L from the interaction zone to the point of observation should be large com-
pared with £ . Therefore, optimum experimental conditions are

L> g > g
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