!‘\’3'7'\ Coz

IRBiGp

This menual was prepared by the Structural Research and “evelopment
Group, the Structwres Section, Kesearch and Levelopment Livision of the
Republic¢ aviation Corporation. The work wes accomplished unaer Contract
&F 33(616)-6066 apd the 7504 Applied hesearch Frogram eatitled *Mechanics
of Flight®, Project No. 1367, Structural Design Criteria in Task No.
13002, Structural Analysis Methods, This work wes initiated under the
direction of the Structursel snslysis Unit, Structuzes Branch, aircraft
laboratory, Directorate of Lsboratories, Wright Air Leveloyment Center.®
Mr. 1. Winnegrad acted initially s# project engineer and wes succeeded
by Mr. G, Hichard. The Manusl wes completed under the direction of the
Structural Analysis Unit, Configuretion heseerch Section, Structures
Eranch, Flight Dynamics laborstory, with Mr. G, E. Maddux as kroject
Engineer.,

The work was coordinsted and supervised by Lr. K. S. levy, Heed of
Structural Research and Development Groups, His velusble suggestions and
criticisms ere gratefully acknowledged es are neumes of the following
personnel of the applied Keseerch and Develo.ment livision of hepublic
Aviation Corporation. Mr. 4. alberi, Acting Munsger of Technicel
Engipeering; Mr. C. hosepkranz, scting Chief Structures Engineer; and
Mr, C, Meissner, Frincipal Structuresa Engineer,

* (Now designated Aeronautical Systems Division)

WalD TR 60-5],7 4-99M, 500, 9-24-62






ABSTRACT

This Manual includes a compilation of methods of solution for thermal stress pro-
blems of the types frequently encountered by aircraft designers. Some of the methods
represent original work done at Republic Aviation Corporation and others were obtained
from the general literature. Where feasible, graphs and formulas are presented from
which the user may obtain answers directly. These are presented in non-dimensional
form to extend their applicability. In other cases, tables are furnished which describe
methods of solution. Liberal use is made of illustrative problems and examples,

Within the limitations of linear elastic theory, the following problems are treated
in detail:

(1) Statically determinate beams
(2) Redundant beams and frames
(3) Riveted or bolted joints

4} Plates

{5) Axially symmetric shells

For more complex linear problems, a general method of attack is presented which
reduces the thermal stress problem to an equivalent mechanical loading problem. This
approach permits utilization of the great variety of analytical methods which have been
developed for stress analysis of structures under purely mechanical loads. A brief re-
view of some of these methods is included with pertinent remarks on their applicability to
thermal stress problems.

In many cases of practical interest, thermal effects introduce non-linearity by causing
large deflections, by affecting the mechanical properties of the material, or by introducing
creep. Solutions for these problems are quite limited. However, they are discussed in some
detail and a generalized stress-strain-time-temperature relationship is postulated which is
applied to buckling of columns and plates.

PUBLICATION REVIEW
This report has been reviewed and is approved. '
FOR THE COMMANDER:

Chief, Flight Lynswics laboratasy
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NOTES ON USING THE MANUAL

This Manual consisis of nine basic sections, divided into numbered sub-sections
and paragraphs. For simplicity in cross-referencing material in the text, all portions
of the Manual designated with a two-tier number (i.e., 1.1) are considered sub-sections,
and all portions designated by numbers of three or more tiers (i.e., 1.1.10r 1.1.1.1)
are congidered paragraphs.

Throughout the Manual, the numbered paragraphs (or sub~-sections) have been
used as the basis for numbering figures, tables, and equations, with new sequences
beginning with each numbered paragraph. Figure and table numbers consist of an appro-
priate paragraph number, followed by a sequence number for the particular figure o2
table. For convemience the paragraph designations have been omitted from the equation
numbers. When an equation from another paragraph is cited in the text, the number of
the paragraph in which that equation occurs is also cited. When a paragraph number is
not given in conjunction with the citation of an equation, it is to be assumed that the
equation is included in the paragraph in which the citation oceurs.

References are listed at the end of those sections which have more than one
reference. In addition,each section contains its own complete table of contents and list
of symbols.
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INTRODUCTION

Aerodynamic heating of bodies moving at supersonic and hypersonic speeds results
in non-uniform temperature rises. High velocity airplanes and missiles are thus sub-
Jected to transient and steady state non-uniform temperature distributions which produce
thermal stresses. In its broadest sense, the thermal problem encompasses both the
fields of mechanics and thermodynamics of non-rigid bodies. This Manual is not concerned
with the solution of the thermodynamic problem. The purpose of the Manual is to provide
analytical techniques for the determination of deformations and stresses in structures sub-
jected to mechanical loads and prescribed temperature distributions.

In order to render problems amenable to engineering application, simplifying assump-
tions and idealizations are made. These are enumerated in the appropriate sections of the
Manual. The subject matter is oriented toward the engineer rather than the mathematician
in that detailed derivations of techniques and formulas are not emphasized. Instead, more
space is devoted to application and qualitative discussions. Mathematical derivations can
be found in the references listed at the end of each section.

The choice of subject material was primarily dictated by those problems which are
tractable analytically and which occur most frequently in practice. However, in many
instances, suggestions are made for the extension of techniques to more complex problems.
Most of the problems treated are linear elastic, in which the stiffness may vary pointwise
over the structure but does not vary with load. Furthermore, in the more difficult problems
(e.g., plates and shells), it is assumed that temperature variations do not affect the stiff-
nesses significantly. Non-linear problems are, for the most part, discussed qualitatively.

Brief summaries of the nine sections of the Manual follow.

Sections 1 and 2 of the Manuszl briefly discuss the theoretical considerations and funda-
mental techniques which underlie the structural applications. Section 1 presents the essen-
tial ideas of strain and stress, the concepts of equilibrium and compatibility, and discusses
the important energy theorems. General techniques {e.g., virtual work, virtual displace-
ments, flexibility and stiffness methods) are covered in Section 2. It is recommended that
standard {exts and the references listed at the ends of the sections be consulted for a more
complete development of these subjects.

Elevated temperature environments generally cause the non-linear behavior of
engineering materials to become more pronounced, and the designer is forced to reassess
the interacting effects of stress, temperature, and time upon structural materials. Section 3
discusses the deformation mechanism and postulates a stress-strain-temperature-time re-
lationship which takes these non-linear effects into account. Methods of determining the
necessary material parameters from simple test data are indicated.

Section 4 presents the thermo-elastic analysis of beams. Since beam analysis is a

frequently occuring structural problem, much space is devoted to the presentation of approxi-
mate time-saving techniques. The deformations and stresses in unrestrained beam cross
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INTRODUCTION (Cont'd)

sections are discussed in detail. Temperature distributions are represented by polynomials,
cross sectional geometries are expressed parametrically, and non-dimensional solutions are
developed. The common form of tabular solutions is also included. General techniques are
then presented for the solution of indeterminate beam systems. The concept of equivalent
fixed end reactions is employed in reducing the thermal problem to a mechanical loading
problem.

Section 5 deals with the thermo-elastic analysis of joints subjected to mechanical
loads and temperature. The loads in the attachments are presented in non-dimensional
graphical form. The flexibility of the plate material and of the hole-pin combination are con-
gidered in the solutions. The effects of rigid pins, rigid sheets and "slop™ are evaluated.
The problem is initially presented for a joint which does not bend and then is modified to
indicate the change in the non-dimensional parameters with bending.

Section 6 is concerned with the determination of thermal stresses and deflections in
plates due to temperatures which vary through both the plate plane and the plate thickness.
The major problem areas considered are

(1) The bending of ciruclar and rectangular plates.
(2) The axisymmetrical and asymmetrical slab problem (plane stress and plane strain)
for circular plates and rings.

Sections 7 and 8 present the thermo-elastic analysis for the stresses and deformations
of axisymmetric shells subjected to axisymmetric loads and temperatures.  Solutions
are given for the conical shells which can approximate the solutions ifor other structural
shapes. Solutions for the compatibility forces which are generated at boundaries of conical
segments, edges, or bulkheads are included to complete the analysis.

Section 9 deals with the instability of structures. Approximate methods are emphasized
in order to include the effects of temperature on stiffness and plastic behavior. Use is made
of non-dimensional buckling curves to reduce the amount of data required by instability pro-
blem solutions.

Manuscript released by the authors September 1960 for publication as a WADD Technical
Report,
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SECTION 1 - THEORETICAL CONSIDERATIONS

The general problem considered is the determination of the stresses and deformations
in a structure when subjected to a given load-temperature distribution. The problem can bhe
exceedingly complex and it is essential that the engineer have some concept of the structure's
behavior. Many difficult problems can be approximated by neglecting parameters which are
of small significance. The significance of a parameter can only be estimated if the behavior
of the structure is known. The introduction of temperature into the problem may complicate
the solution but it does not alter the structural techniques. It is, therefore, mandatory that
the engineer become cognizant of the structural principles before he attempts to solve the
thermal problem.

When a structure is subjected to mechanical and thermal stimuli, it responds by de-
formingand storing energy. The deformation is characterized by a "strain distribution' with
an accompanying "stress and energy density distribution". The determination of these distri-
butions requires an understanding of the concepts of strain and compatibility, stress and equil-
ibrium, boundary conditions, uniqueness of solutions, and the stationary characteristics of
the energy forms. These concepts are briefly discussed in this section.

The foliowing symbols are used throughout this section:
Length of beam
Unit vector normal to surface
Cosine of angle between normal to the surface and 1 axis
Cylindrieal or spherical coordinate
Traction vector
Displacement vector with components uy, Uy, ug
X,¥,2 Distances along the coordinate axes

B Hix
-

=Rl ]

Body

Young's modulus

Secant modulus

Body force per unit of volume acting in i direction
Shear modulus

Spring constant

Potential energy

Complementary potential energy
Point in a body; Concentrated load
Point in a body

Region of body; Reaction

Surface

Temperature

Strain energy

Complementary strain energy
Strain energy per unit volume

" T

QoHTOTgEHAQ 1=

*

Complementary strain energy per wmit volume

Volume
Loss in potential energy of the surface tractions and body forces
Loss in potential energy where the tractions are preascribed

EE< G F
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£

Loss in potential energy where the displacements are precribed

X
e
N

Traction in x,y, z directions

Coefficient of linear expansion

Operator indicating a small change

Deflection th

i=j: Extensional strain in the 1= direction

i#j: Shearing strain. Half the angle change between two initially perpendicular
lines in the i and j directions.

Cylindrical or spherical coordinate

o__+0o_ +
XX yyazz

Poisson's ratio

Stress

Stress components acting on plane perpendicular to i direction and in the j
direction

Spherical coordinate

Rotation

BoR

m
P

e-e-:quv @0

Subscripts

i.j Dummy subscripts
n Acting on plane perpendicular to n direction
XY, 2 Referring to x,y, z directions

r,o0,% Referring to r, ©, ¥ directions. o,

, Symbotl for differentiation; e.g., W j = 5

Superscripts

Displaced position
1.1 STRAIN

A body is said to be strained when the relative positions of points in the body are
altered. The changes in the relative positions of points are called deformations, and the
study of deformations is the province of the analysis of strain.

Although all material bodies are to some extent deformable, it is useful to introduce
the ideal case of a rigid body, i.e., one which does not deform. A rigid body is one for which
the distance between every pair of points remains the same throughout its history.

Let the non-rigid body B, in the undeformed state, occupy some region R referred
to an orthogonal set of Cartesian axes 0-x1 X, Xq (Figure 1.1-1) fixed in space. Let
P (xl. Xos xs) represent a typical point P. In the strained state, the points of B will occupy
some region R' and the point P {x., x,, X,) will displace to the point P' x!, x!, x}). The
. = . 1’.72° "3 1 3
displacement u is a vector and is “givén by

u = (ul, u2, u3) = (xi -xl, x'2 -Xz, X:';-X3) .
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1.1 (Cont'd)

FIGURE 1.1-1 DISPLACEMENT OF A STRUCTURE UNDER
MECHANICAL AND/OR THERMAL LOCADS

Now consider two neighboring points O (0,0,0) and O' (xl,xz,xa) before deformation. Deter-

minination of their relative displacements due to some external stimulus is of interest. From the
Taylor' s Expansion Theorem of the calculus,
ay a My
u, (X,,X,,X,) =1 (0,0,0)+(—) X +(—) X +(——)
AU & fo,0,00 1 \Z2/(0,0,00 2 \¥37/(0,0,0) "3

+ terms involving the higher derivatives, (1a)

or, more compactly,
3

ou
1
u (x)=u (0) + 2 (—u—*) XFeowo . (1b)
1 i =1 axj 0 J
'
Let the symbol 45 be defined by ui,j = gj
Then the expression (la% becomes
u, (x) = {0) + j§1 (ui,j) 0 xj +... . {le)
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1.1 (Cont'd)
Furthermore,

(ui,j) = % (ui,j +“j,i) +% (“i,j - uj,i) 1
is an algebraic identity.

Introduce the symbols

1
elj =§(“1,j+uj,i) 1
and (2)

1
“ni72 ULt Y,e

so that the relative displacement of the neighboring points is
3

W, (x) - (0) = E:l [eij+wij ] ] Xt

The quantities Eij are symmetrical in the indices, i.e,, Eij = Eji and are known as the
components of strain (Reference 1-1),
ou
Example 1: eu:ul 1 1 g the longitudinal component of strain in the Xy direc-

= —-é—x-—-
1
i g is the longitudinal or extensional component of strain in

ou ou
B _1 1 T2 |, .
Example 2: 61 5 = €3 = 3 [—axz + axlil is half the change in the angle between two
line elements which were originally at right angles to each other and is referred to as the
shearing component of strain in the XX, plane (Figure 1.1-2(b)).

tion, (Figure 1.1-2(a)) u =

the X direction,

The quantities wlj are skew symmetrical, i.e., and are known as the

ij - "%
components of rotation because they can be shown to represent components of a rigid body rota-
tion Reference 1-1).

At each point of the body, there exists a set of three mutually orthogonal directions for
which the shearing strains are zero. These directions are called the principal axes of strain
and the corresponding extensional strains are the principal strains. The principal axes of
strain remain perpendicular to each other after the deformation, and an elemental rectangular
parallelepiped with edges parallel to the principal axes remains a rectangular parallelepiped
after deformation. In general, it will have also undergone a small rotation (Reference 1-2).
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ou
al“
u qu 112 2

2
— et
g I I I _a
- ' ,JJ My

i dx, |/

2 21 -~ — dx
- ax 1
dx1 d.xl T 1
: oannd Xl, u.l S Xl, u1
(a) Extensional Strain (b) Shearing Strain

FIGURE 1.1-2 TYPES OF STRAIN

1.1.1 Compatibility

From a physical point of view, the displacement Y in a simply-connected continuous

body must be single valued and continuous. Certain restrictions must be placed on the strains
€5 in order that this be sc. These restrictions constitute the so-called strain-compatibility
equ]ations.

The compatibility equations are obtained by considering the defining formulas for the
strain components in rectangular coordinates:

1 _
7[%1*%ﬁ]‘eﬁ ’ @)

as a system of partial differential equations from which the displacements u, are to be deter-

mined when the strain components € .. are prescribed functions of the coordinates. ¥ the body
is simply-conmected, it can be shown” (Reference 1-1) that the conditions on the strains neces-
sary and sufficient to ensure single-valued, continuous solutions for.the displacements consti-
tute six independent partial differential equations. Expressed in Cartesian coordinates, they are:
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1.1.1 (Cont'd)

2
9 Gxx _ 5 _ aeyz . aezx .\ an)L )
dy oz 8x 8x oy oz
2
3 J€ o€ o€
‘Eziaxf = "5}3_(‘ ayzx+ e T )
Z

826 o€ o€ o€

zz  _ 9 (_ . yz , __zx )
oxdy 0z oz ax ay

(2)

826 826 826

2 Bxoy 5t —%
o oy ax

2 2 2
. a eyz ) 0 € . a ezz

Jy 8z oz ayz

2 2 2
. g GZX= a ezz . o Exx

0z 8x 8x2 azz

The above compatibility equations (valid for both thermal and mechanical problems)
also ensure the determination of the relative displacements from Eq. (1),

If the body is multiply connected (has internal cavities), then additional conditions
are necessary to ensure single-valued displacements. These conditions specify that the limit-
ing values of the displacements at imaginary cuts which make the body simply connected, be
the same when a cut is approached from either gide,

1.2 TRACTION AND STRESS

The internal forces in a body are usually described in terms of the "stress states"
throughout the body. Consider some point Q lying on the surface § of the body shown in
Figure 1.2-1, Let the unit normal vector to the surface at the point Q be designated by_ﬁ,
and the force acting on §S, which encompasses the point, by & Pn. Then the traction acting

across the surface S at the point Q is defined as

T Li 5 P, |
= m n - 1
n 58—0 F5 (1)
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1.2 {Cont! d)

- ) Pn
5S 4
{a) Uncut Body {b) Free Body

FIGURE 1.2-1 TRACTIONS AT THE POINT Q ACTING ON THE PLANE WITH NORMALT

The traction is thus a vector which specifies the force acting per unit of area at a
point. The components of the traction vector in a given set of directions are defined as the
stress components. The stress components at a given point are dependent upon the orienta-
tion of the plane through the point with respect to the chosen coordinate system. Thus, for
example, in a rectangular coordinate system (Figure 1.2-2), the stress components in the
X,y,and z directions of the traction tx’ acting on the face normal to the x axls, are O’ O

and o__, respectively. Here, the first subscript indicates the direction normal to the area

on whigh the stress component acts and the second subscript refers to the direction of the
component,

All the remarks pertinent to principal strains apply to the stresses. In addition, when
the material is isotropic, then the principal directions of stress and strain colncide.
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t
Uyz / x
o
Zy " - o-xx
o
zZX
dy / —— X
T %z dz
ZZ
/ "

FIGURE 1.2-2 STRESS COMPONENTS

1.2.1 Stress Equations of Equilibrium in Cartesian Coordinates

The equilibrium equations state that the sum of the forces acting on a differential ele-
ment of material are in static or dynamic equilibrium.

Figure 1, 2. 1-1 illustrates an elemental rectangular parallelepiped with edges parallel
to the x, y and z axes. In addition to the stresses acting on the faces, there may exist body
forces F dxdydz, where F  is the body force per unit of volume. In most practical ap-
plications, the body forces are due either to the weight of the body in a static problem or
D' Alembert inertia forces in a dynamic problem.

Equilibrium of forces in the x direction requires that:

Bcrxx o0 X BUZX
ax ¢ By t o P B0

Similarly, for the y and z directions,
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oo, oo

Bx By y
90 oo oo
YZ ZZ _
ax * ay g tF, =0

¥

FIGURE 1.2.1-1 STRESS COMPONENTS ON RECTANGULAR
PARALLELEPIPED
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1.2.1 (Cont'd)

Conservation of angular momentum (equilibrium of moments) leads to equality of cross-shears,
or

Xy ¥yx

vz =crzy {ib)
=0

zX Xz

Consequently, the significant number of stress components is reduced from nine to six. The
equations of equilibrium in other than Cartesian coordinates take different forms (Section 1.6).

1.3 BOUNDARY CONDITIONS

In order to have a complete solution, something must be known about each point on the
bounding surface of a structure. Either the surface tractions (applied stresses) must be known
or the displacements must be specified (e.g., zero displacements at a support) or a known
relationship between the tractions and displacements must be prescribed {e. g. , flexible sup-
port of known stiffness).

The prescribed traction components in the directions of the chosen coordinate axes may
be expressed in terms of the surface stresses by means of the equilibrium equations

X =g _n +0 _n +0 _n
XX X ¥yX'y ZX Z

Y =¢

Xy n, + Uyy ny + Uzy n, (1)

z = n +g _n +g _n
szx‘yzy zz "z °’

where X = component of traction in the x direction, etc, (Figure 1.3-1), n_=cos {n,x) =cogine
of the angle hetween the normal to the surface and the x axis.
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1.3 (Cont'd)

FIGURE 1.3-1 SPECIFICATION OF SURFACE TRACTIONS

1.4 STRESS-STRAIN RELATIONSHIP

The complete solution of a problem in elasticity requires the determination of six
stress components, three displacement components and six strain components at each point
of a body. Fifteen independent equations are required for the evaluation of these quantities.
Nine of these equations have already been presented, namely the six strain displacement re-
lations (Eqs. (2) of Sub-section 1,1, which ensure that the compatibility equations are sat-
isfied when the displacements are single-valued) and the three equilibrium equations {Egs.
{1) of Paragraph 1.2.1). Both of these sets of equations are independent of the material
properties of the body.
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1.4 {Cont'd)

The remaining six equations are obtained from a stress-strain relationship between
the six stresses and six strains, It is through this relationship, which is a property of the
material, that the effects of plasticity, temperature, creep, etc., come into play.

If the material is isotropic and linearly elastic, then the stress-strain relationship
can be expressed as

- L -
€17 E ["ii v "kk)] vt
la)
_ 1+y s _ (
€ij = TE aij (1,3,[( = 1,2,3),
where E = elastic modulus,
v = Poisson's ratio
« = linear coefficient of thermal expansion
T = Temperature above room temperature as a datum.
The shear modulus is defined by
- E
G = 2(1+v) (1b)

Because of the isotropy of the material, the expansions due to temperature cause no
shearing strains. The linear elastic-stress-strain relations for an isctropic material are of
the form of Eq. (1a) for any orthogonal coordinate system (rectangular or curvilinear). For
example, in a rectangular coordinate system,

i,jk = 1,2,3 = x,y,z ,
while for a cylindrical coordinate system,
i,j,k = 1,2,3 = r, 8, z

The linear stress-strain relationships of Eq. {1a) can be modified to provide stress-
strain relationships for materials which are not linear elastic by employing an equivalent
secant modulus ES = % aT _0 T in place of E. Unforiunately, ES will not be constant and
direct solution of problems may be extremely difficult. A progressive seolution may be pos-
sible by solving the problem for small increments of load-time histories where it is assumed
that the modulus is constant in each interval, evaluating new constant moduli for the next
increment, and continuing the process until the final load-time history is applied. This tech-
nique must assume the sense of the incremental stress since a material may have different
moduli dependent on the direction of loading.

The strain-compatibility equations can now be converted to stress-compatibility equa-
tions through the stress-strain relationships. Thus for a linear-elastic stress-strain relation-
ship with temperature, Egqs. {2) of Paragraph 1.1.1 become

2 2
asvyv2 o + &8 L og [M—va«taT] -0

XX axz 1-v ax2
2 2
vy V2o + Z8 g [Lrv o2, FT) @)
¥y 2 1- v 2
oy oy
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1.4  (Cont'd)

2
1+v) Vv O, * 2

2
(1+v) vV~ Opr *

2 2
2 0 8°T (2)
() V2 oo+ oxay * 2 E axay cont'd

2
+v) V + + aE
() V" og, o By oz

where

®=0c +0 +0 ,
XX vy zz

or, in shorthand notation,

2
(1+v) ¢ qij+®,ij+aE [q

5 =0,i# ]
B{=1,1=j

The stress compatibility equations can be employed to show that the only time the
thermal stresses are identically zero in an unrestrained linear-elastic body is when the
temperature is a linear function of the rectangular (x,y,z) coordinates. Assume all stress
components Ot oyz are zero, Then certainly the equilibrium equations are satisfied

where

throughout the interior of the body and on the surface. Equations (2) reduce to

1+ V2T+ﬁ—0 —-—azT 0

1-v 2 = ™ o
ax

1+v 2 82T_ 32T -

1w YIT*r 3=0 may - ° ®)
%

I V2T+32—g— 0 £T =~ 0,
% oy &

WADD TR 60-517 1.14



1.4  (Cont'd)

which yields the condition

£T _ T _ &T _ &PT T T

2 - 2 T .2 "oy o  mey 0 “)

% e . o

Equations (4) have the unique solution that T must be of the form
T =Ax + By + Cz + D , )

where A, B, C, D are constants; i.e., T is at most a linear function of the rectangular
coordinates x, y, and z.

NOTE: If T = Ar for an unrestrained circular plate where r is the radial coordinate measured
from the center, there will be thermal stresses. This follows because T is linear in r but not
in x and y where

r = /22 +y?

1.5 UNIQUENESS

The strain displacement relations, equilibrium equations, and linear stress-strain re-
lations provide a set of equations from which the stresses, strains, and displacements are to be
determined at each point of a linear elastic body. From thia set of equations, fogether with
appropriate boundary conditions, it can be proven not only that there exists a solution to the
linear elasticity problem but also that the solution is unique.

In a simple form (see Reference 1-1 for a more complete discussion), Kirchhoff's
Uniqueness Theorem can be stated as follows: If the initial displacements, velocities, body
forces and temperatures are specified throughout the volume, and if the compatibility con-
ditions discussed in Paragraph 1.1.1 are satisfied and the appropriate boundary conditions
{Sub-section 1. 3) are specified over the entire surface, there exists only one form of equili-
brium in the sense that the distribution of stresses and strains is determined uniquely.

The above theorem applies to elasticity problems with infinitesimal strains and dis-
placements. If the strains and displacements are finite, the solution may not be unique as in
preblems concerning elastic stability (Section 9), where different equilibrium configurations
are possible. The uniqueness of the solution for infinitesimal strains suggests the utilization
of the incremental method for closer approximations of the non-linear problem. Consideration
should be given to changes in stiffness, geometry, etc., with load-temperature history.

1.6 SPECIAL ORTHOGONAL COCRDINATE SYSTEMS

The representation of the stress-strain relationships, strain-displacement equations
and the equilibrium equations depends upon the system of reference employed. It is often
convenient to select a coordinate system which will simplify the boundary conditions and re-
quired solution. The three most useful orthogonal coordinate systems are the rectangular,
cylindrical and the spherical. For linear elastic, isotropic bodies, the stress-strain relation-
ships (Eq. (1a) of Sub-section 1.4) are of the same form for all orthogonal coordinate systems.
The strain-displacement equations and equilibrium equations have already been presented in
rectangular coordinates. The cylindrical and spherical counterparts are shown in Tables 1.6-1
and -2. These expressions are simplified if the three dimensional problem reduces to a two or
one dimensional problem.
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TABLE 1.6-2

EQUATIONS OF EQUILIBRIUM

t:rﬁ’i +Fj=0
Rectangular
Tex, x +ny,y * O,z tF,=0
T +0 + 0 +F =0
Xy,X yv.¥ Zy, 2z Yy
a +0 +0 +F =0
Xz,X ¥z,Y ZZ.,Z z
Cylindrical
-0
rr 60 _
arrr,r*'-ra're,e-karz,zJr r +Fr_0
%o.r *T 900,06 %20,z T T ro T Fo =9
1 1 _
Oz,r "1 %z,0 %22,z 2%z T ¥ =0
Spherical
20~ 0 -ag,, +to_ . cot ©
— 1 1 rr 00 PP re
O_Grr,r+raer,e+rsmeo¢r,¢+ r +Fr
30 . +{0O -0o,,)cot ©
_ 1 1 re” ‘%0 Ty
()‘_o-re,r-i-rﬂee,e-'-r‘sine{)'l,lJe,ﬁfi+ r +*Fg
30 , +2cotO o
_ 1 81 Ty Oy
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1.7 ENERGY PRINCIPLES

The behaviour of a structure can be described by means of energy principles
which yleld relationships hetween the streases, sirains, displacements and forces
when adequate cond{tions (boundary, temperature-load-time history, material proper-
ties, etc.) are defined. These principles can bhe derived from the "Principle of Virtual
Work" which is a restatement of conservation of energy.

1.7.1 Principle of Virtual Work

"If a body is in equilibrium under the action of prescribed body and surface
forces, the work done by these forces in a small additional displacement, the virtual
displacement 64, is equal to the change in the internal strain energy, second order
terms in the inerements of strain being neglected.' The strain energy is defined in
Paragraph 1.7.2.1.

A qualitative argument supporting this theorem is as follows:

The body "B'" with surface S (Figure 1.7.1-1) is in equilibrium under the action
of the applied external force, body forces, and internal stress systems, represented

6t

6t t

FIGURE 1.7.1-1 ELASTIC BODY WITH APPLIED FORCES

symbolically by "t", "F'" and "¢", respectively. I an incremental, self-equilibrating
external force system '"6t" is imposed, there result corresponding internal stresses
60, stralns 6 € and continucus displacements 6u. From conservation of energy,

f téuds + f FéudV + (terms of order Sudt)
S B

= f o€ dV + (terms of order dode ) |
B
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1.7.1 (Cont'd)

Neglecting second order terms,

f tduds + f Foudv= f odedv, i}
S B B

which 18 the mathematical statement of the theorem.

A consequence of the theorem of virtual work is the Reciprocal Theorem of Betti
and Rayleigh: If an elastic body s subjected to two systems of body and surface forces,
then the work that would be done by the first system tis Fi (surface tractions and body

forces, respectively) in acting through the displacements ui' due to the second system of

forces, is equal to the work that would be done by the second system t/, Fi' in acting through

the displacements u due to the first system of forces. In symbols,the theorem becomes:

jtu'ds+ f Fuldv = ft!u.ds+ f Fludv . {2a)
g i B 11 S i1 B i
where the repeated subscript i implies summation.

An alternate form of the reciprocal theorem is

ft.u'.dS + fFu'dV= fcri. e'i.dV '
g1 B i1 B Y j

where the unprimed quantities correspond to surface tractions, body forces, and stresses
of the first system and the primed quantities to the displacements and strains of the second
system. Itis important to. note that the forces and stresses of the first system can be un-
related to the displacements and strains of the second system, and may include thermal
effects. The only requirements are that the force-stress system be in equilibrium and the
strain displacement system be compatible. This feature of the reciprocal theorem makes
it extremely useful in the solution of statically indeterminate problems (Paragraph 2.1.1).

(2b)

REMARK: The virtual work and reciprocal theorems are quite general and are not restricted
to elastic problems.

1.7.2  Variational Principles

The solution of three dimensional problems in the theory of elasticity represents
in many cases an almost impossible task even for the isothermal or mechanical problem.
For isotropic and homogeneous bodies, the literature contains only approximate solutions
which are based upon simplifying assumptions. One very powerful method of attack which
will yield approximate solutions is based upon that branch of mathematics which is known
as the calculus of variations. The application of the calculus of variations to the fleid of
elasticity and thermoelasticity depends upon the following variational principles:

(1) The principle of minimum potential energy, and

(2) The principle of minimum complementary energy (sometimes called comple-
mentary potential energy).

These in turn follow from the principle of virtual work which was discussed in Paragraph
1.7.1.
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1.7.2 (Cont' d)

Before discussing the variational principles, in detail, it will be desirable to first
define the energy terms employed and the mathematical operations which are essential to
their proper application.

1.7.2.1 Definitions of Terms

Potential Energy of Surface Tractions and Body Forces: The loss in potential

energy of the surface tractions 1:i and body forces Fi is defined by

W= ftudS+fFudV ' )
g 11 B 11

where the tractions ti have the dimensions of force per unit of area and the body forces Fi

have the dimensions of force per unit of volume. The displacements u;, and hence the poten-

tial energy, are measured from a datum defined by the undeformed position of the body.
Strain Energy: The strain energy density in a deformable body is defined as the

work done per unit of volume by the internal stresses when the stresses and eorresponding

strains vary from zero to their terminal values. The strain energy density may be expressed
in terms of the siresses and strains as

€
Uy = ./; ode | )

where, In Cartesian coordinates,

ode =0 . dexx +oryy deyy +0 z dezz +20rxy de

Z Xy
8
+ 2ayz deyz + 2¢:rzx dezx = cr1j deij
Similarly
o
Ux = f edo
Vo9

The strain energy of the body is then

U= '£ UV dv “)
In most problems it is convenient to express the strain energy in terms of internal forces
and displacements rather than stresses and strains. Appropriate expressions are given in
Section 2.

Potential Energy: The potential energy L of a body is defined as

L=0U- Wt , (53')

where U is given by Eq. {4) and Wt is the loss in potential energy of the bedy forces over the
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1.7.2.1 (Cont'd)

total volume (assuming the body forces to be prescribed throughout the volume) and of the
surface tractions over that portion of the surface where the tractions are prescribed.

W, = f Fudv + f tuds {5b)
B S,

where St denotes that portion of the surface where the traction and not the displacements are

prescribed. This statement is amplified in Paragraph 1.7.2. 3 where the principle of minimum
potential energy is discussed. Note that an elastic support may be considered to be part of the
structure so that displacements or tractions may still be presecribed on the boundary.

That is,

Complementary Potential Energy: The complementary potential energy L* is
defined ag

L*ZU*"W ’
u

where U* is the complementary strain energy of the body and (assuming the body forces to
be prescribed throughout the body) Wu is the loss in potential energy of the surface traction

over that portion of the surface, Su where the displacement and not the traction is pre-
scribed,

That is,

W, = '/; tuds . (5¢)

1.7.2.2 Variational Techniques

Stationary Values: Application of minimum energy principles involves the defini-
tion of stationary values for functions or, more generally, functionals {integrals of functions).
A statlonary condition is necessary in order that an extremum (maximum or minimum)
exist. In the case of a function f (xl, Xpr o e ey xn), the conditions for a stationary value

at a point P are

o _
=."=§JT— =0. Q)
P P Lp

In the cage of functionals, the problem is more complex. For example, given the functional

1
1fy) =./. F (x,y,y') dx, where F is a given explicit function of x,y,y’, the question may
X
0
be asked, what is the function y (x) (if it exists) which makes I{y) stationary where y{x.) and
y(xl) are prescribed? The aim of the calculus of variation is to solve problems such gs this.

A typiecal procedure is shown as follows:
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1.7.2.2 (Cont'd)

Consider the integral

X
I=f Fi(ix,yy,.y")a&x ,
)

and seek the function y = y {x) which makes I stationary where y and y' are prescribed at
x, and X, . The existence of such a function is assumed and the effect on I is examined of a
vﬂriatiox} in y by a small amount §y where dy = 8y' =Q atx = X and x = x (Figure 1.7.2.2-1).

X, Vo) Extremizing
R Function

FIGURE 1.7.2.2-1 VARIATION OF EXTREMIZING FUNCTION

If I is an extremizing function, then

X

1 9F 9F aF

51=f [—6y+-~ Sy' +— 6y”]dx=0 ; 2)
x, 3y oy! oyt

The left hand side is called the first variation of the integral I.

In order to eliminate the variations §y' and dy'' from Eq. (2), the second and
third terms are integrated by parts:

X X X
1 oF oF 1 1d ,oF

By OV dx = [ 5 0¥ ] - f & (y) Sy dx (3a)
o *o %o
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1.7.2.2 (Cont'd)

oy oy
X X
0 X0 0 (3b)
2
¥ xlﬂa(gmayn
xo dx

Because of the assumed boundary conditions, the bracketed terms in (3a) and (3b) vanish so
that : .

X 2 '
1 aF d oF d® JF
61=f [_____._..._+___ ] 6de=0 . (4)
&y ~dx ¥ 2

%o

The above Integral must vanish for all admissible §y, which requires that the expression in
the bracket of Eq. {4) be zero, i.e.,

2 .
oF _ d oF,  d° OF _
Ty T LT T ®)

This differential equation is known as the Euler differential equation from which the function
y can be determined.

1.7.2.3 Minimum Potential Energy

The functional called potential energy was defined in Paragraph 1.7.2.1. We now
state-the following important theorem for elastic bodies:

Theorem of Minimum Potential Energy: Of all compatible displacements for a
stable structure satisfying given displacement boundary conditions, those which satisfy the
equilibrium equations make the potential energy, L, a minimum. The converse theorem, which
is the one used most often, is as follows: '

"Of all the displacements satisfying the boundary conditions, those which make the
potential energy a minimum satisfy the equilibrium equations." The proofs of these theorems
and the other theorems discussed may be found in Reference 1-1.

Since the potential energy ( L = U - Wt) is a minimum for the true equilibrium
state, it must also be stationary, i.e.,

SL=68(U-W)=0, ' (1a)

where the quantities U and Wt are defined in Paragraph 1.7.2.1. Equation (1) is stated quite.

simply; however, a full understanding of its meaning requires further explanation. According to
Kirchhoff's Uniqueness Theorem, either the displacements or the tractions {(but not both) must be
prescribed at each point of the boundary of the body. Variations of the potential energy, Eq. (1a),

WADD TR 60-517 1.23



1.7.2.3 (Cont'd)

are effected by varying the displacements only over those portions of the body where the
tractions are prescribed. The displacement variation must vanish over those portions of the
boundary where the displacements are prescribed. As a consequence, if the displacements
are given over the entire surface and there are no body forces W, = 0), then Eq. (1a)
becomes

sU=06. {1b)
This is, in effect, a stationary (minimum) strain energy principle:

H there are no body forces present then, of all the arbitrary sets of continuous
displacements which satisfy the compatibility equations and the specified displacement con-
ditions over the entire boundary, those displacements which satisfy equilibrium make the
strain energy a local minimum with respect to neighboring displacements,

(Remark: Since variations of the potential energy are expressed in terms of the displace -
ments, the strain energy must be given in terms of displacements. )

Example: The following elementary problem illustrates the application of the
principle of minimum potential energy.

A cantilever beam of flexural rigidity EI is propped by an elastic spring with
spring constant K (force/unit of deflection). Find the end deflection A due to an applied
load P.

FIGURE 1.7.2.3-1 ELASTICALLY PROPPED CANTILEVER BEAM

The internal (strain) energy for the beam-spring system, expressed in terms of
the end displacement is
2 2
U= 3EI§ + Kg (see any elementary text on strength of materials).
24

According to the theorem, the loss in potential energy of the external loads W, is taken
only over those portions of the body where the forces are prescribed. In this problem the
only prescribed force is the end load P. Thus,
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1.7.2.3 (Cont' d)

Wt=PA,
so that
L=U—Wt
2
=(i%-!:+K)“A- ~ PA,
P 2

It follows from Eq. (la) that

oL = 9L 5A = (§§1+K)A-p 54 = 0.
A .3

The factor A is arbitrary and, therefore, the bracketed term is zero, i.e.,

A=—E
E-]% + K
L
Note that
a1y 2 2 3EI 2
_T(GA) = §°L = 3 + K (64)" >0,
dA A

which establishes a minimum,

1.7.2.4 Minimum Complementary Energy

Another important variational principle relates to the complementary energy
functional (L* = U* - wu) defined in Paragraph 1.7.2.1,

The Theorem of Minimum Complementary Energy: "Of all states of stress in a
stable structure satisfying equilibrium and given traction boundary conditions, that state
which satisfies compatibility requirements makes the complementary energy L* a
minimum, *

Since the complementary energy is a minimum for the compatible state, it must
also be stationary, i.e.,

SL* =5 (U*-W_) =0 . ' (1a)
where the quantities U* and Wu are as defined in Paragraph 1, 7.2, I,

The strain energy, in this case, is expressed in terms of the stresses or forces,
and variations of the complementary energy are effected by varying the stresses such that
tractions vary only over those portions of the surface where the displacements are prescribed.
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1.7.2.4  (Cont'd)

The stress variation must vanish over those portions of the boundary where the tractions are
prescribed. Consequently, if the tractions are given over the entire surface { Wu = 0} then
Eq. (1a) becomes

U =0 . (1b)
Equation (1b) is known as The Minimum Strain Energy Theorem, which states:

"Of all arbitrary stress states which satisfy equilibrium and the specified tractions
over the entire boundary, that state which satisfies compatibility makes the complementary
strain energy a minimum. "™ When a problem is linearly elastic U* = U,

Example: The theorem of minimum complementary energy will now be demon-
strated for the case of a beam on three supports.

A beam (constant EI) is loaded and supported as shown in Figure 1.7.2.4-1, I
is assumed that there is no displacement at the supports. The support reactions are to be
determined.

Solution:  This is a statically indeterminate beam of 1 degree of indeterminancy. Let 2R
represent the center reaction. Because of symmetry, the other two reactions are equal to
W-R. External equilibrium of the structure is satisfied for all values of R. However, there
is only one value of R which will also satisfy compatibility conditions, i,e., that the slope is
continuous, and the displacement is zero at the middle support.

Since the loads are prescribed everywhere except at the supports, force variations,
according to the theorem, are permitted only at the supports where displacements are prescribed
as zero (W _ = 0), Thus the complementary strain energy, expressed in terms of the forces
must be a Hinimum with respect to variations in R, i.e., 6 U* = 0, §2u*> 0.

Congidering only bending energy, the complementary strain energy

24 _ 2 L .2
- M = M
U*‘f zExdx“zf 2ET &
0 0
where
M=(W-R)x ; 0<x<./2
=¥ .Bx ; tf2gx<t
or £
= 2 ) 2
2 2 W = - Rx)“dx
* — W-R)~ _2 -2 "7
U 2f T x“ dx + ,/‘1, SFT
0 —

2
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1.7.2.4  (Cont'd)

3
sur = & [-M-§ W+lR]GR=o

Rr—%’-._,lw | _ Wé'_‘é_'l

w-

=
2!\9
w
=
=
1
=

FIGURE 1.7.2.4-1 BEAM WITH THREE SUPPORTS
Since 6R is arbitrary, the bracketed expression is zero, which yields

1

R=3

w

The two end reactions are, therefore,

-
W-R=]W ,

and the center reaction is

Note also that

3
2., 4 [1 . 7 2
6U_EI-[12+12](6R) >0
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SECTION 2 - STRUCTURAL TECHNIQUES

The solution of the structural equations can be performed in many ways. The tech-
nique selected depends upon the type of problem, the type of boundary conditions, the com~
plexity and the required accuracy, etc. The problem is simplified if the structure is linear
and permits the addition of simple solutions to obtain the final solution.

The following symbols are used throughout this section:

a,b,i,j, k.1 Degrees of freedom of a structure
f. Internal axial load in beam due to a unit load at "i"

Deflection at "i" due to a unit load at "j' with respect to a datum at "r"

Modulus of rupture factor = M ;. /Melastic

k
m, Internal moment in beam due to a mit load at "i"
n
n

Unit normal to bounding surface
,0_,n Direction cosines of normal with x,y,z axes

Internal torque in beam due to a umnit load at "i"

q
T Distance from origin in polar coordinates; distance from shear center
u Generalized displacement

éu Arbitrary displacement satisfying compatibility
u,v,w Displacement in x,y, z direction
v, Internal transverse shear due to unit load at "i"

H
=
™

Coordinates in x,y, z directions
Distance in beam cross section from neutral axis

Area

Effective transverse shear area

Linear modulus of material

Surface or body force acting in X, direction

Arbitrary force system satisfymg equilibrium

Linear shear modulus

Moment of inertia of cross section

Load at "j" due to a unit (virtual) displacement at "i"

“ogmEpy -

=

Length of beam

Internal moment due to applied loads

Internal axial load due to applied loads
Internal torque load due to applied load
Temperature

Internal strain energy f f 1] deij dav

. _ ij
Complementary strain energy = fvfg Eij doi ] dv
v Transverse shear load; volume; potential for a conservative force system
W Loss in potential energy of surface tractions and body forces
6 Wt =S6W Change in potentizal due to & virtual displacement
& Wu = W* Change in complementary potential due to a virtual force system

CHOWEBH A

c
*
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Subscripts
a,b,1,j

r

<HnOZEW >

Axial stiffness of cross section = f ES dA
Transverse shear stiffness of cross section = f GS dAV

Bending stiffneas of cross section = f ES yz dA

Torsional stiffness of cross section = f GS r2 dA

Linear coefficient of thermal expansion

Average shear strain - transverse shear displacement per unit length

Ihcremental operator

Kronecker delta = 1ifi = §
0ifl # j

Deflection at "i"

Strain

Extensional strains

Shear strains

Axial strain of eross section due to applied loads and temperature, respectively

Polar coordinate - angle between r and x axis
Rotation at "i"

Curvature of cross section due to applied loads and temperature, respectively

Transformation matrix converting applied loads to loads on the substructures
Poisson's ratio

Stress

Stress on plane perpendicular to x axis and in y direction

Torsion - change in twist of cross section per unit length
Alry function
Gradient operator

Pertaining to degrees of freedom a, b, i, j

Pertaining to X xj directions
Pertaining to datum structure

Pertaining to axial energy, stresses or strains; allowable

Body

Pertaining to bending energy; deformation due to mechanical loads
Pertaining to torsional energy, stresses or strains

Surface; secant modulus

Deformation due to temperature

Pertaining to transverse shear energy, siresses or strains

Substructure
Pertaining to a rotational degree of freedom (e.g., b')
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2,1 LINEAR STRUCTURES

If the structural response to mechanical and thermal loads is directly proportion-
al to these loads and independent of past history, the structure is said to be linear elastie.
For a linear elastic structure, it is possible to solve the general structural problem by the
golution of a few unit-type problems, and to add these solutions to obtain the final complete
solution. The technique is that each unit solution shall satisfy equilibrium and compatibility
and, when superposed upon each other, satisfy the given boundary conditions. Thus, it is
possible to remove boundary conditions and solve for the new structure and superpose self-
equilibrating force systems which will have the net effect of satisfying the boundary conditions
(flexibility method). It is also possible to divide the structure into smaller sub-structures,
solve each sub-structure and impose compatibility conditions to satisfy the boundary condi-
tions of the over-all structure and the sub-structures (stiffness method). These techniques
are illustrated in the flexibility and stiffness coefficient methods of Sub-section 4.3 and are
derivable from the "Principle of Virtual Work' discussed in Paragraph 1.7.1.

No structure is truly linear elastic with respect to thermal stimulation since the
stiffness of the structure will change with temperature. The structure can be treated as
linear elastic, for approximate solutions, where the changes in temperature or stresses
are not severe enough to significantly change the stiffness of the material and where the
strains are small and geometry changes can be ignored.

2.1.1  Virtual Work Techniques

As a consequence of the reciprocal theorem (Paragraph 1.7.1), the logs in poten—
tial energy of the body and surface forces acting on a structure in its true equilibrium state,
due to a compatible set of arbitrary virtual displacements (not necessarily satisfying any
displacement boundary conditions), is equal to the gain in strain energy. In equation form,

U=0W*= GWt. 1)

where sy = foﬁedv
B

5W = fBFiﬁuidV+./;tiauidS .

In addition, the loss of complementary potential energy of the body and surface forces acting,
on a structure in its true equilibrium state, due to a self-equilibrating set of arbitrary virtual
forces or stresses (not necegsarily satisfying traction boundary conditions) is equal to the gain
in complementary strain energy, i.e.,

* — * =
6U*=0W*=6W, , 2)

where -
SU* = fEﬁOdv
B

SW* = f w6 F, dV+ f w st dS .
B i1 s i1
An inequality results if the structure is not in its true equilibrium state.

2.1.1.1 Virtual Forces

Figure 2.1.1.1-1(a) shows a bedy in equilibrium under the force systems F i and Fk.
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2.1.1,1 (Cont'd)

\‘_____ Original Boundary

Deformed Boundary

{) Virtual Force (c) Virtual Displacement

FIGURE 2.1.1.1-1 BODY UNDER LOAD
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2,1,1.1 (Cont'd)

Determine the displacement in some chogen direction of point i, To do this, apply a unmit
force t')‘Fi =1, acting at the point in the chosen direction (Figure 2,1,1,1-1(b), and react
this force by (SFI_. This force system is in equilibrium and thus satisfies the requirements
of a virtual force system. From Eq. (2) of Paragraph 2,1.1,

= *: - »
SU*=6W*=1-u +6F, *u, (12)

If the reaction points of 6Fr are chosen as the datum with respect to which the deflection is
to be measured, then u, = 0 and

r
SU*=u, = | esodv (1b)
1 /3

The deflection can always be measured with respect to a datum defined by the
reaction points for the applied virtual load. Statically determinate virtual reactions at
points which are reactions for the actual statically indeterminate structure will always
yield deflections with respect to the structural datum with a minimum amount of calcula-
tion. A rigid body correction must be made to determine the deflection of a point with
respect to a structural datum if the chosen datum is not the same as the struetural datum.
The rigid body correction is the displacement of the chosen datum with respect to the
structural datum,

2.1.1.2 Virtual Displacements

To determine a load F, which is in equilibrium with the force systems Fj and Fk
[ Figure 2. 1. 1. 1-1(c)], a displacement ﬁui =1 is imposed in the direction of F; with eorres-

ponding arbitrary but compatible deformations throughout the body. This displacement sys-
tem satisfies the requirements of a virtual displacement system. From Eq. (1) of Paragraph
2,1.1,

SU=6W=F; " 1+Fou +F, ouy (1a)
If the displacement system is chosen in such a manner that

Guj = auk =0,
then

6U=Fi=j;3crae dv . {1b)

The virtual displacement principle can also yield an alternate statement of the equili-
brium equations. To illustrate this, consider the beam of Figure 2,1.1.2-1 to be subjected
to a rigid body virtual displacement in the vertical direction,

du=1.
Since no straining occurs in a rigid body displacement,
6U=[osedV=0,
B n n
W= 2 Féu=6uy F, .
i=1 i=1
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2.1.1,2 (Cont'd)

However
6U=06W,

which results in n

i§1 F, = 0.

The sbove is a statement of equilibrium of vertical forces.

Consider next a rigid body virtual rotation 4 ©= 1 about point O,

Again
SU=10 ,
But n n
W= Y F60x=060 ) Fx .
i=1 i=1
Therefore, 4
> Fx, =0,
(o1
which is a statement of equilibrium of moments.
/”‘
””’z”)
- -
-~
/’/”/’,/
,””/”/
//’ - /’,
- -
e -
e 30
o e e T e e e e e 9

bl
R

FIGURE 2.1.1.2-1 VERTICALLY LOADED BEAM IN EQUILIBRIUM
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2.1.2 Strain Energy in Terms of Internal Loads and Deformations

It is most often convenient to express the strain energy of the body in terms of in-
ternal forces and the deformations of these forces rather than as stresses and strains. Con-
sider a body in equilibrium and compatibility under a given set of loads and a temperature
distribution. Cut the body into elemental volumes and apply tractions at the cuts which are
equal to those stresses which existed in the body before it was cut. These tractions are
exactly those necessary to insure a perfect fit between the elemental volumes. It can be
shown by the Divergence Theorem that the strain energy expressed by these internal forces
acting through the displacement of the cuts is equal to the work done by the body and surface
forces acting through their displacement, and that the complementary strain energy is equal
to the complementary work of the body and surface forces.

Figure 2.1, 2-1 illusirates a beam subjected to temperature and mechanical loads.
The equivalent internal loads and the deformation of the cross section are defined by an

T y
y F T v
/ B
/JI—D X / | Principal Axis Shear Center
W
pd
“ l—‘- L _sjl z - Q

\ Elastic Area

Center (C.G.)
‘/ Section B-B
X

FIGURE 2.1.2-1 BEAM UNDER LOAD

axial load P and an axial deformation per unit length of €. M + ?T; a bending moment M and
a change in slope per unit length (curvature) of KM + KT; a twisting moment Q and a change

in twist per unit length (torsion) of T ; a transverse shear load V and a relative shear dis-
placement per unit length (shear strain) of 7. The subscript M implies the deformation as-
sociated with the mechanical load and the subscript T implies deformations associated with
temperature.

Assuming linear strains over the beam cross section, let

€ A= Axial strain
éQ = Torsional shearing strain
and
€ v " Transverse shearing strain (tnay be nonlinear)
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2.1.2 (Cont'd)

These strains may be expressed in terms of the internal deformations by the relations

€0 = EM+ eT+(KM+KT) b

eQ= T'r (1)
Jogey aa = BG ¥ .

Similarly let

Tp = Axial stress
UQ = Torsional shearing siress
UV = Transverse shear stress.

These internal stresses can be expressed in terms of the internal loads by the relations

ES(GA~—aT) = ES [GM + €1 + (KM + KT) y~ozT]

T, =
Gg Qr
O'Q—GSGQ—T {2a)

chdA= IGSeVdA=V ,

where
7 = B Q
‘M EA I ¢ '
JEgaTdA
- S e v
€, = ———— Y = 0= , (2b)
T EA ! AVG
M- - 2
EI
JEgy aT dA
T ET
and
- [Egy’da
EA= [ Eg dA
JG=J GSr2 dA (for circular sections only) (2e)
A G= [Ggda,

0= [E ydA
€ a
Evaluating the strain energy IV J;) o dedV and the complementary strain energy f v f 0 edodV

results in
u =UA+UM+UQ+UV
(3a)

* * * * *
U UA+UM+UQ+UV ’
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2.1.2 (Cont'd)

where L EM T L _ _
UA =J; Pd(eM+eT)dx UK =j;j:) (€M+€T)dex

L L Q _ v
UQ =J; J;Terdx Ué =_/;J; 7dQ dx i
UV=_I(;L_};§Vd17dx U‘~;=_[;LOV v dV dx

In addition,
L -
6U = fo [ p {6 (eM + eT)} —M{é (KM + KT}+ Q{G T}+ V{éy}]dx (4a)
L
L o - v
86U j(; [{5P} ( €yt eT) {GM}(KM + KT) + {6Q }T+ {6V} v ]dx . {4b)
Thus, the change in strain energy is equivalent to the internal loads acting through the
change in the internal deformations. The change in complementary strain energy is equi-
valent to the internal deformations acting through the change in the internal loads.

Using expression (4b} and the virtual force technique, the displacement at some
point on the beam (when shear energy is neglected), is given by the expression

L : L
u = -f (K’ * Kp m; dx +J(; (ey+ epfy &= ©)

where 6M
6P

Beam deflections are further discussed in Paragraph 4.2.1.

2.1.3  Application of Virtual Force Technique - Flexibility Coefficient

The flexibility coefficient rfij is defined as the deflection (or rotation) at point i

with respect to some datum r, when the structure is subjected to a unit load at point j and
reacted at points defining the datum r.

2.1.3.1 Flexibility Coefficient for 2 Beam-Like Structure

Using the virtual force technique and the equivalent loads and displacements for a
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2.1.3.1 (Cont'd)

beam-like structure, results in
L] ff m.m .
f..= f __—J_—i + j i + Ej_qi + vjvi dx . (1)
3 o | AE EI JG A,G

The deflection of the structure can be obtained by employing Eq. (5) of Paragraph
2.1.2 or by adding the effects of each load times the corresponding flexibility coeificient,

= .. P,
4 j IJP.'i i P] !
When the structure is linear elastic, the values of AE, EI, JG, and A_G do not
change with load or temperature stimuli and linear simultaneous equations can be set up
to solve for the desired quantities (see Paragraph 4. 2.4).

where repeated indices indicate summation. 2

2.1.3.2 Addition of Flexibility Coefficientis

Equation (1) of Paragraph 2.1.3.1 can be visualized as a group of springs in series.
The energy content of a spring is directly proportional to its flexibility and the approxm:atlon
of ignoring all energies but the bending energy is equivalent to assuming 0 = AlE 1 AVG
The flexibility of a structure can be analyzed by superposing the flexibilities of structures
where all flexibilities except one are assumed zero as shown in Figure 2.1.3.2-1.

AXIAL BENDING TWIST SHEAR
L ff
£es = Jo T ax o+ 0 + 0+ 0 Axial Energy
ijp iR
Lm.mi
f.. = 0 +f ~—£— dx + 0 + 0 Bending Energy
M 0 EI
Lqg.q.
f.. = 0 + 0 + f —Jidx + 0 Twisting Energy
1jQ 0 Jo
Lv \}
iy = 0 + 0 + 0+ f "1l 4x shear Enerzy
0 AG
v
fij = fijP + fijM + fijQ + fijV Total Energy

FIGURE 2.1.3.2-1 SUPERPOSITION OF FLEXIBILITIES

A structure (e.g., a cantilever) can be analyzed by the solutions of individual portions
(springs) which are then placed together by satisfying compatibility and equilibrium at each of the
common contacts. This is also equivalent to analyzing the over-all structure where all flexibi-
lities but one portion are identically zero and adding the solutions as shown in Figure 2.1.3.2-2.
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2.1.3.2 (Cont'd)

fp——— L
.
2 CIR—
“ by F,
M

{a) Actual Structure

2 NP nend
= 4 92 a - $b
4 O TF +F “ @ +F
a b ‘ b
\Jma+Mb+Fb L) —F.D \_/ Mb

{b) Series Components of Actual Structure

I

A
= Z a Rigid b
ZEe
tFa @ be
N\, 7
+ M W,
-t [, ——1
-
i G
Y s ) F
~1 @ ]5“,:1 T b
M

M b
\_/ . \J
{c) Superposable Equivalents

FIGURE 2.1.3.2-2 EQUIVALENT STRUCTURES IN SERIES
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2.1.3.2 (Cont'd)

In Figure 2.1.3.2-2(a) and -2 (b) the actual structure is shown to be equivalent
to two substructures 1 and 2 connected in series.

datum as the actual structure, with end loads equal and opposite to the reactions of sub-
structure 2. Substructure 2 has the same loads as the actual structure but the displacements

are corrected for a rigid body motion corresponding to the translation and rotation (ua) of

Substructure 1 has the same displacement

the end of substructure 1. The same results and calculations would be obtained by adding the
solution of the two rigid flexible beam problems shown in Figure 2. 1.3.2-2(c).

The elemental substructures are much easier to analyze than the over-all structure.
The loads on the substructures (F) are expressed in terms of the applied loads on the actual
structure (F) by means of the equilibrium equations.

1010
61 L1
0010
0001

(71 )0} -

£

F
a

-

Mb

“

1)

‘The displacements of the actual structures can be similarly expressed in terms of the loads

and flexibility of substructures,

1 1
4 % T (Fg ¥ Fp) + g M, + M, + Fp L)
1 1
O = Tag (Fg *Fp) + Horgr M, Myt FpL)
— 2 2
Bp T B PLE Ty By ot Thpe My
(=] = & + 2 F, + 2
b a bl Ty ot Mp
In matrix form:
- | | | _
|
AN 1 |1 Iy 1 f1
2 LI faa! : faa * 1 qa : L
il e
1 1 1 1 K1
ea fa’a | fa'a' I fa'a L fa‘a' i fa'a'
____r_;_l _________ I
1 [ 1 |1 1 L1 2
Ai}= < Ab > = faaat | faa.' | faa +L faa' * ibb | faa' * fbb'
i 2
+Lf, | 4L fa,a,J_+Lfa,a L1, :+L fargr
o R Y T
L bJ a'a : a'a' l faa.'a +L fa'a' 'blI fa'a‘+ fb‘b'
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2.1.3.2 (Cont'd)

The above influence coefficients of the actual structure can be expressed in terms of the
influence matrices of the substructures and the matrix expressing the loads on the sub-
structures in terms of the applied loads, as follows:

—lfaa o 0 o |
. Y 0 0
(] - (M ] o 0 ’t % | [*] @a)
0 0 b Ty

where [A'] is the transpose of [A] .

The ahove transformation of the influence coefficients matrices of the substructures
to the influence matrix of the actual structure can be readily verified by utilizing the fact that
the total work done on the substructures is equal to the total work done on the actual structure.
Thus

() {a) - {=eH=d -
But from (3)

{a} - [e] 4}
therefore:

=} ] {m} - {7 [] {7} - )
From Eq. (1),

(%} - {1}
so that

{Ret={} [%]

Substituting the above in Eq . (4b) yields

{rip [a) {n 47 [l ] Pl (M)
(] = D] [ [*]
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2.1.4 Applications of Virtual Displacement Techniques

The loads on the structure and the stiffness coefficients can be obtained by applying
the principle of virtual displacement. The stiffness coefficient is defined as the force (or
moment) at a point j when the gtructure is subjected to a unit displicement at point i.

2.1.4.1 load on a Structure

Apply a virtual displacement pattern which does not violate compatibility and is
unity at Fi and zero at all other points where other forces act (see Figure 2.1.1.1-1(c)).

From Eq. (1b) of Paragraph 2.1.1.2,

6U = Fi = f g6 €dv,
B

For beam-like structures using the equivalent internal loads and deformation of
Eq. (4) of Paragraph 2.1.2,
L
86U = F, =f [Pae - Mok +Q6r+V(¢5§)]dx, (1)
0

where the changes in the deformation are due to the virtual displacement and the loads acting
on the cross section constitute the self-equilibrating thermal stress system.

For beam-like structures the bending energy predominates and the following is obtained
as an approximation

L
Fj~-j; M6 K dx. @)

Thus, to obtain the force at a point in the structure, evaluation of the virtual work due to the
virtual displacement is required. This is equal to the internal forces in the structure acting
through the virtual internal deformation. This procedure is employed in Section 9, "Stability of
Structures."

2.1.4.2 Stiffness Coefficients

Applying a displacement at point j causes loads to be generated at j and points where
displacements are kept zero. These forces are the counterpart of the flexibility coefficients
which give the deflection at points of interest due to a unit load at a given point and zero load
everywhere else. The stiffness coefficients are the loads at points of Interest due to the unit
displacement at the given point and zero displacement at the other points of Interest. The
clements of the stiffness coefficients matrix are the loads which result in the unit deflection
matrix and can be obtained by inverting the flexibility coefficient matrix. The forces at the
datum can be obtained from the equilibrium equation. Similarly, the influence coefficient
matrix can be obtained by inverting the non-singular stiffness matrix. The non-singular matrix
is obtained by removing the elements associated with the datum of the structure.

fij Kji =1 {1a)
Ky = Ty (1b)

-1
ETR? ae)

The stifiness coefficients for an elemental beam can be obtained by inverting the flex-
ibility coefficients as shown in the following example.
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2.1.4.2 (Cont'd)

Example - Cantilever Beam of Constant EI (Bending Energy Only):

' L L
a ¢ =f mm, dx=f xzdx } L3
’) an ~J, TH ) H 3EI
1

b
-
-
d a f =fLma'madx =f =fL-xE-_I:?_ 2
—0 an' 7 J, TEI a'a Br -2 @
0 0

X o—j

m =x Ym ,m, Lax _ L

a f,,=f ——dx=f El EI

a'a EI
ma,=1 0 0

where prime (a') refers to rotational loads or displacements at point a.

-1
Kk K P AR 12 6
an aa' 3 2 3 7 _2
1 L L
= — 2 = EI (3)\
K K EI -L_. L - 6_ _i...
[ Ta'a a'a' 2 L2 L

From equilibrium and symmetry the entire stiffness matrix can be obtained for the loads which
are required when a joint is moved a unit displacment and all other joints are fixed. This is
shown in Table 2.1,4.2-1

TABLE 2.1.4.2-1 STIFFNESS COEFFICIENTS OF BEAM-LIKE STRUCTURE

Displacement at Joint

©) @ ® @’
@ 12EI _ _8El _ 12EI _ 6EI
L3 1.2 1.3 L2
% @' -SE 4EI 6 EI 2 EI
S 1.2 L L2 L
L]
i@ - LH 6]:211 123E1 6EL
3 A L L L2
@' -SE 2EI 6 EI 4EI
L2 L 1.2 L

2.1.4.3 Addition of Stiffness Coefficients

If two or more elements of a structure have a common point (joint) of interest,
then the load necessary to obtain the displacement at that point is the sum of the forces
necessary to apply the displacement to each element. This is analogous to a set of springs
in parallel.
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2.1.4.3  (Cont'd)

It is important to maintain a sign convention which is invariant in space for the
stiffness coefficients since the forces of elements with a common point may be so oriented
that the load in the adjacent elements may be of opposite sign (References 2-1 and 2-2).

Coupled stiffness coefficients can be obtained by repeating basic stiffness coef-
ficients and adding those terms which are in common. Thus the stiffness at a joint is addi-
tive (the springs are in parallel) and the total stiffness at a joint is the sum of the stiffnesses
of all members coming into the joint. This is shown in Table 2.1.4.3-1 and Figure 2.1.4.3-1.

TABLE 2.1.4-3-1. COUPLED STIFFNESS COEFFICIENTS

Displacement at Joint

Q) @ ® @ | ®@ @
12E,I; 6E, L, 12E, T, 6E,L, |
@ L3 T2 T8 % | ° 0
1 1 1 1 |
; 6E, L, 4E,1, 6E, I, 2E,L, |
) 1.2 1.2 L2 Ly | ° ’
1 1 1 |
e
® —12E111 6E, I, } 12E,1, . 12E,1, 6E,L i 6E,1L, }-1213212 6E,l,
- 3 2 3 2 2 2 3 T2
% Ly L] { L} L, L] L, I L, L,
L]
= ® _6E111 2E;L, | 6EL ) 6E,lL, 4E, T, +4E212 | SE,lL, 2E,1,
Lt 2 L | 72 L2 L L | 2 L
k Ly | T T N
® o . i ) 12E{, 6E212 121-:212 6E212
| .3 12 .3 L2
2 2 2 2
I
® o . I i 6E,1, 2E,1, 6E,L, 4E,1,
2 2
| Ly Ly Ly 2
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2.1.4.3 (Cont'd)

) 12E1]1
+ L13 '
P - |~ =
: _ 5
6E111 2E111
2 L
L1 1
.11 (
12E111 +12E212 6E111 6E212
3 -
Ll I423 le L22
+—B 1— —— e
) 4E111 N 4E212
L L
6E111 i 6E2I2 1 9
2 2
L1 .L2
d
2
12E212 ' 6E212
6E.I L, 2E212 2
3 - 22 — i -
2 2
L2
FIGURE 2.1.4.3-1 STIFFNESS COEFFICIENTS FOR A DOUBLE BEAM
2.1.5 Properties of Influence Coefficients Matrix

The influence {flexibility and stiffness) coefficients are utilized in the solution of
indeterminate structures (e.g., Sub-section 4.3)., The coefficients can be obtained by calcula-
tion (References 2-1 and 2-3) or by experimental techniques. It is possible to employ available
structural relationships to simplify or check the calculation or experimental determination of
these coefficients. The results are presented for flexibility coefficients but apply equally well
to stiffness coefficients.
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2.1.5.1 Symmetry

The deformaticn of a point i due to a unit load at a second point j is equal to the de-
formation of the second point j due to a unit load at the original point i. The deformation
(linear or rotational) at a point corresponds to the type of load {force or moment) at the other
point.

fij = fji : (1a)
Aij = Aji ; eij' = eji' {ib)
Ay = Oy 3 Oy = Sy (lc)
where Aij = linear displacemement at i due to umit linear load at j
eij = rotational displacement at i due to unit load at j
Aij' = linear displacement at i due to a unit moment at j
©.., = rotational displacement at i due to unit moment at j
The symmetry of the matrix is evident by noting the equivalence of the energy terms
similar to
f 1)(m f (mHemy)
EI

This symmetry can be utilized to reduce the number of calculations or to average the
experimental results.

2.1.5.2 Positive Definiteness

The fact that each structure absorbs energy in deforming requires that the displace-
ment of a point on a structure cannot have a component which is opposite to te direction of the
applied load This is demonsirated by the positiveness of the energy terms similar to

"L (m ) dx

EI
that point must never be negative (always positive except for the reaction for which it is zero).
Thus the main diagonal of the influence coefficient matrix must be non-negative,

. Thus the influence coefficient defining the deflection of a point due to a load at

> .
£, 2 o 1)

Another relationship derivable from the positive definiteness of the structural matrix
is that the product of two main diagonal elements must never be legs than the square of the cor-
responding off-diagonal element.

ce By 2 ) (2)
This is evident from the Schwartz inequality,
2
2 2
m; dx m, dx m, m
i 1] i
(f EI )( EI )2(f Bl d") ' @)
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2.1.5.2 (Cont'd)

The positive definiteness property can be employed to check on the accuracy of the
experimentally determined values.

2.1.6 Equivalent Thermal Load

The linear elastic structure permits a solution by the superposition of various
loading conditions as long as the total effects add up to the original problem. This approach
is particularly adaptable to structures subjected to temperature. The effect of a temperature
is to cause an axial expansion of each elemental volume of the structure. The stresses which
arise due to temperature are the self-equilibrating stresses necessary to make each elemental
volume compatible with the adjacent elemental volumes and the boundary conditions.

There are basically two methods of solving the equivalent mechanical loading pro-
blem for the linear-elastic structure subjected to both temperature and mechanical loading.
In each method, the structure is first decomposed into elemental units. The behavior of
each elemental unit for temperature and mechanical loading is readily determinable. In the
first method, the elemental units are permitted to deform independently of each other and the
displacement of the boundaries of adjacent elemental units are observed. Attempt is then made
to put the decomposed structure together again., This requires that the elemental boundaries
be compatible with each other. Self-equilibrating force systems (internal forces) are applied,
wherever necessary, at adjacent boundaries to guarantee compatibility. For beam-like struc-
tures, this is cailed the flexibility method. In the second method, the elements are restrained
from deforming when subjected to the temperature and load by infinitely rigid restraints. The
mechanical loads generated at the restraints are supplied by the structure if this restraint
actually exists, I the restraint does not exist then the boundaries of the elemental units are
permitted to deform (always maintaining compatability) until the load in the artificial restraint
vanishes. For beam-like structures, this is called the stiffness method. These techniques are
described for beam-like structures in Sub-section 4-3.

The solution for beam-like structural units i8 usually expressed as influence coef-
ficients, that is, In terms of the deformation due to unit type loading, or the loading due to a
unit type deformation. It is advantageous, therefore, to convert a thermal loading to an equiva-
lent mechanical loading so as to treat a temperature problem as an equivalent mechanical pro-
blem and simplify the amount and type of calculations. All the structural technigues available
for mechanical loads could then be employed to solve the structure subjected to mechanical
loads and temperature.

2.1.6.1 Three Dimensional Hydrostatic Ioading

Assume that the body is cut into elemental volumes which are then supported with
infinitely rigid restraints so that compatibility between the elemental volumes is maintained.
Application of temperature distribution to the structure will nowtry to ey%;and these elemental
volumes which will be counteracted by hydrostatic stresses equal to - 1—0[;1/ at the artificial
%Q_VZ—E of the restraining
hydrostatic stress loads applied to adjacent elemental volumes. Since the restraints are arti-
ficial, the structure must be allowed to deform so as to balance out these "equivalent body
forces." By this means the original problem has been changed into two problems. The stresses

in the first problem of the artificially restrained body are simply:

restraints. The artificial restraints must supply the difference
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2.1.6.1 (Cont'd)

1 _ 1 _1 - _ _EaT
% = Y%y T %%z T 1-2v
(1}
10’ = 10’ = 10 = 0
Xy yz ZX

The second problem is the classical linear elastic problem with body forces
which are proportional to the thermal gradient.

F = - Ea aT
X 1-2y ax
_ Ea aT
Fy B 1-2y dy @)
_ Ea aT
Fo =~ 1-2v ez
and the boundary conditions,
2 2 2 _ EaT
“x T Txyly Pl T T -2y &
2o'n +2an +zo-n =—-—Eg——1~‘—-n 3)
¥X X YY ¥y ¥z z 1-2v 'y
% n . 2 2 EaT
ZX + %0 n + "0 mn = ——2—n
X ZYy' ¥ ZZ Z 1-2y 'z

ax oy 0z, . 1-2v ox
g ZU i) 20 a 20
(axYX) + é{yy))r (az yz)_ llfaéy g"vr -0 )
2 2 2
M) + a( ozy) + 3( azz) B Eo oT _ 0
ax oy oz 1-2yp & ’

and the strain displacement (or compatibility) equations (Paragraph 1.1), together with the

stress-strain relations (Paragraph 1.4), provide the necessary and sufficient equations for
a solution.

The final solution is the sum of the individual solutions,

i o - )

Thus the temperature problem is the mechanical equivalent of applying a hydro-
statie loading, proportional to the temperature, to all the elements and the boundary of the
structure and then apply body forces to the structure, equivalent to the gradient of the hydro-

static loading, along with boundary forces which negate the - 'I%LZTV boundary forces.
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2.1.6.2 Fixed End Beam Reactions

If the behavior of the elemental structures when subjected to mechanical and
thermal loads is known {e.g., determinate beams of Section 4) within acceptable engineering
aceuracy, the artificial restraints (Jacks) need not be constructed at each elemental volume
but only at the common boundaries (joints) of these larger elemental structures. First the
thermal stimulation is applied to the structure. Each joint of the elemental beams will tend
to deform but will be restrained by the artificial jacks. The loads introduced in the artificial
jacks are commonly termed fixed end reactions. The artificial jacks must supply the unbalance
of the fixed end reactions coming into the common joint from the various structural elements.
The original structural problem is thereby reduced to two simpler problems. The first pro-
blem is the solution of the elemental (fixed end) beams which are restrained from any motion
at the ends. The solution of this type of problem is indicated in Sub-section 4.2. The second
problem is the deformation necessary to eliminate the artificial restraints and internal loads
in a structure with mechanical loads equal to the negative of the unbalanced fixed end reactions
acting at each joint. The solution of this type problem is indicated in Sub-section 4.3. The
solution of the original problem is thus the sum of the solutions of the two simpler problems.
Reference 2-2 indicates that the deformation at the joints of the structure, due to the applied
temperatures and loads, is identical to those calculated by the equivalent fixed end reactions.
The relative deformations of the elemental beams between the joints must be added to the joint
deformations to obtain the total deformations.

2.1.7 Plane Stress and Plane Strain Problem

The three dimensional problem, in general, requires the determination of 15 quanti-
ties (6 stress, 6 strain, and 3 displacements), given the body forces and the boundary
conditions. This problem can be greatly simplified if the given geometry or loading makes some
of the unknown quantities zero (or insignificant). This is the case in the plane strain and plane
stress problems.

The state of plane strain is defined as one-in which the displacement component in a
given direction is zero {e.g., z direction, w = 0) and the other displacement components are
independent of this direction @ , = v z = 0). This condition arises in a long (axial dimen-
sion large with respect to cross sectional dimensions) prismatic body under loads and tem-
peratures which are independent of the axial coordinates.

The state of plane stress is defined as one in which the stresses acting on faces
parallel to a given plane are zero. This condition arises in a short (axial dimension small
with respect to cross sectional dimensions) prismatic body, e.g., a flat plate, whose face
are unrestrained and unloaded. The axial dimension is sufficiently small so that the axial
stress cannot change significantly.

Solutions can be obtained by an "Airy" function which satisfies the equation of
equilibrium identically and is made to satisfy the compatibility equations. A general
solution can be obtained by the sum of such functions (which also satisfies compatibility
and equilibrium) and whose total boundary condition duplicates the actual boundary con-
dition. The St. Venant's principle (Paragraph 2.1.8) can be employed to obtain approxi-
mate solutions which are satisifactory at distances away from the area where the boundary
conditions are not satisfied identically.

2.1.7.1 Plane Strain

The technique is demonstrated for a rectangular coordinate system but is equally
applicable o other orthogonal systems.
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2.1.7.1 (Cont'd)
Plane strain is defined by the condition w = 0; u =ufx,y} ; v=v{x,y).

From Table 1.6-1 the following strain conditions are obtained:

m
It

€. &Y ; € eyy(X.Y); €y =exy(x,.Y)

yy

€,, = €4 = €y, = 0. 1)

Assume that the body forces are derivable from a potential function (-V), (e.g., gravity,
temperature, ete.). Thus -V x - Fx .

From Table 1.6-2, since cryz =0, = 0, the equilibrium equations are obtained,
(crXx - V),x + ny,y =40 {2a)
+ -V = 0. 2b
v, X (Uyy )’y (2b)

From Eg. (1) of Paragraph 1.1.1 the compatibility equations reduce to

€ -2 =0, (3)

+ )
xx,yy = Syy.xx € xy,xy

and from a linear stress-strain relationship this becomes

Lv o) o - vo ] o+ [ @010, - uon],m-wxy,xy}ﬂ @)

The Airy function ¢is defined as

Tx "V T Py Gy TV T Pt "%y T Yxy ©)
which satisifies the equilibrium equations identically and substituting (5) in (4) results in
_ _ v
O o 2 sy () ]
or
4 1-2y 2 _
v(p+(1_v)v vV =0 (6b)

which satisfies the elastic compatibility condition.

An Airy function satisfies the equations of equilibriwm and linear compatibility
and each one will determine characteristic boundary conditions.

The potential (-V) can be viewed as the restraint forces generated by the artificial
restraints to maintain compatibility by restraining the elemental volumes when stimulated by
load or temperature. In a gravity field it is simply the density and in a temperature field it

. EaqT
is the hydrostatic stress (— 1-2v ;"
The temperature problem reduces to
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2.1.7.1 (Cont'd)

and for zero mechanical boundary tractions,

¢=@ =0 (8)
In polar coordinates v?T=T _+ Ly & Lo (%a)
’ , T r T,r 2 ",00°
and
2 2 2
4 9 1 3 1 )

V<P=( t 7 ar T ———) @. (b)

81'2 r 8r rZ 862

The total solution is the sum of the stresses obtained from the above formulation with

‘s _ _ . _ EaT
the stresses from the restrained conditions Oy = . vy = O = " T3y
2.1.7.2 Plane Stress
In the case of plane stress, the technique ig similar. Utilizing o = O,y =
o _ = 0 and the equilibrium, compatibility, and stress-strain relationship, L€ follo\’%ing is
obtained: 4 9
Vie+(l-v)VvVVv=0 (1)

For thermal stimulation it is no longer necessary to restrain the thermal ex-
pansion in the axial (z) direction since the structure is free to expand in this direction.
The necessary artificial restraints are just the xz and yz planes without the xy plane.

The potential or equivalent hydrostatic pressure becomes (~-V) = (- E{a__’rl; ) . The
thermal plane stress problem then becomes
vt p+aE V2T =0, (2)
and for zero mechanical boundary tractions,
= =0, 3
?=0 4 (3)
The total solution is the sum of the stresses obtained from the above formulation with
the stresses from the restrained conditions ¢__=a_ = - EoT
XX ¥y 1-v

2.1.8 St. Venant's Principle

In many instances the solution to the problem can be simplified by obtaining an
approximate solution in which the surface tractions (which may be impossible to prescribe)
are not satisfied identically. In general, the engineer only knows the resultant force and
not the traction distribution. "If the local applied tractions are replaced by a statically
equivalent load system, then the solution will be satisfactory at points sufficiently removed
from the region of application of the local tractions.™ This is known as the "8t. Venant's
Principle” and is extremely useful when the exact solution is too complex (or may not be
solvable with available mathematical tools). This principle is employed in Section 4 where
the zero tractions on the free end of the thermoelastic beam were replaced by a self-equili-
brating thermal stress system. The solutions are satisfactory at a cross section away
(approximately 2 to 3 depths) from the free end and a local approximation is employed in
the vicinity of the free end rather than attempting an exact solution.
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2.2 NON-LINEAR STRUCTURES

The necessary conditions that a structure will be linear-elastic in going from its
original state to its final state is seldom fully realized in an actual airframe design where
minimum weight is required.

The advent of high speed vehicles has forced the designer of airframe siructures
to re-assess the non-linear effects of stress, temperature and time upon the structural
material. Formerly the design was based on a linear elastic analysis of the structure be-
cause of the simplicity and wealth of analyses in the literature employing classical
"elasticity" (linear) theories.

An examination of experimental data, however, revealed some discrepancies between
the linear analyses and the actual results. In some cases the analysis underestimated the
maximum load while in other instances it overestimated the load.

The problem of a beam in bending i8 a well known example of underestimating the
maximum load. The classical linear theory results in a stress distribution which is propor-

tional to the distance from the neutral axis (0 = - %X— } and the maximum allowable moment
Ty 1

Ymax
This value, obtained by assumi.t&g aIstress distribution, is significantly lower than the experi-
mental value of M A =T kA {modulus of rupture) by a factor of k 2 1 which de-

max

pends upon the geometry and the stress-strain curve of the material. The discrepancy is pri-
marily due to the fact that the linear analysis results in a significant stress gradient which will
be reduced as the stresses approach the maximum allowable stress due to the actual stress-
gtrain curve of the material. Additional examples are stress-concentrations, thermal stresses,
interaction stresses of shells, etc. The problem of the buckling of a structure is a well known
example of overegtimating the maximum load. The classical linear theory assumes a stress
distribution with a constant upper bound on the modulus. The calculated value can be signif-
icantly above the actual value which depends upon the stress level and the stress gradient. This
is qualitatively discussed in Section 9 on the effect of plasticity and eccentricity upon stability.
Additional examples of overestimating maximum 16ad is the ignoring of stress concentrations,
fatigue damage, etc.

(M A) would occur when the maximum allowable stress (o A) is attalned M A = -

The designer was forced, therefore, to modify the linear analysis by introducing a
plasticity factor to account for the non-linearity of the stress-sirain relationship. This pro-
cedure is fairly successful when the effects of time and thermal gradients are negligible and
the non-linear behavior of the structure can be estimated from the experimentally determined
uniaxial {short-time) stress-strain relationship at the design temperature.

The problem of the effects of a general stress-temperature-time history upon a structure
is quite complex and available analyses are usually lacking in reliability and ease of application.
Attempts to employ modified linear procedures are fraught with danger and may lead to excessive
errors in estimating the life of a structure. The errors can occur in either direction; either in
underestimating the structural life and resulting in an excessively heavy structure, or in over-
estimating the structural life which would cause a premature failure: Any attempt to experi-
mentally determine adequate empirical analysis procedures would be defeated by the tremendous
amount of test time and the high costs necessary to determine the effect of all possible stress-
temperature~time histories upon various geometric configurations. The time available to do
this experimental work before a design must be gelected would be far from adequate in the rapidly
advancing technology of materials, structures, ete. It ig imperative, therefore, that all analysis
nethods be based on fundamental concepts and simple procedures which best approximate the

wailable experimental data. The empirical design factors should be obtainable with as little
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2.2 (Cont'd)

experimental data as possible and the analysis procedures should be presented in as simple
a manner as possible to minimize the amount of labor required to analyze the structure. A
non-dimensional approach should be investigated in order to reduce the amount of experi-
mental data and analysis curves required.

An incremental time technique as deacribed in Section 1 can be employed in special
cases. In general, however, the amount of necessary computations will be prohibitive.
Approximations based on deformation theory could be attempted to make the problem solvable
and the approximations would give a clue as to whether the solution overestimates or under-
estimates the true behavior of the structure. The effect of approximations @meglecting
energies, approximating variables by constants, additional assumptions, etc.) can be more
readily evaluated by simplifying the non-linear general equations than by trying to modify
the solutions of over-simplified linear equations.

The equations of equilibrium and of compatibility, it was shown, do not depend upon
a stress-strain relationship. They can be obtained from energy principles alone (virtual
work). The equations of equilibrium are basically a relationship of the stresses, and the
equations of compatibility are a relationship of strains. The stress-strain relationships
are the additional conditions necessary to combine the equations of equilibrium and com-
patibility in terms of the stresses or strains alone. The material behavior is discussed
in Section 3 to obtain reascnable and non-dimensional stress-strain relationships.

Methods of analyzing non-linear structures are briefly discussed in the following
paragraphs. Most non-linear problems are considered beyond the present scope of this
Manual. The non-linear problem of stability is presented in more detail in Section 9 be-
cause of the great need, the utility, and availability of approximate methods.

2.2.1 Incremental Linear Solutions

Incremental linear solutions were briefly discussed in Section 1. The technique
will give the correct results provided the incremental history is sufficiently small and the
structure is elastic. An elastic structure may be linear or non-linear and is defined by
a stress-strain relationship which is uniquely defined so that a reversal of stress remains
on the initial loading curves. The incremental technique is equivalent to approximating the
stress-strain relationship by a series of straight lines and solving a set of linear elastic
structures with different geometries and stiffnesses. The necessity for recalculating the
geometry or including higher derivatives depends upon the effect of these parameters and
the required accuracy. The amount of calculation and accuracy are inversely related and
good judgement is necessary to obtain a sufficiently accurate solution without prohibitively
large numbers of calculations. This technique can be readily adapted to a digital or analog
type of calculation machine.

2.2.2 Inverse Solution

The inverse technique can be employed to solve for the loading conditions which
result from an assumed displacement and corresponding compatible strain distribution.
This technique can be applied to linear or non-linear problems. The stress distribution
and the loading can be obtained byutilizing the known stress-strain (linear or non-linear)
relationship with the assumed strain distribution. The St. Venant principle (Paragraph 2.1.8)
can be employed to extend the solution to structures in which the boundary loadings are not
identical but statically equivalent.
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2.2.2 (Cont'd)

In many cases it is possible to determine the correct displacement or strain
distribution pattern by employing the principle of minimum complementary potential
(Paragraph 1.7.2.4). This procedure was utilized in Reference 2-4 to prove the existence
of a linear axial strain distribution in a prismatic beam subjected to terminal loads.
General golutions can be obtained for beams subjected to axial loads, transverse loads
and moments by asswming linear axial strain distributions and employing non-dimensional
stress-strain relationships (Section 3). The applied load can then be plotted versus a suit-
able strain parameter for various material parameters.

Assuming Airy functions (Paragraphs 2.1.7.1 and 2.1.7.2) results in inverse solu-
tions of the linear plane strain and plane stress problems for the boundary conditions satis~
fied by the Airy functions. A combination of several Airy functions can sometimes be
employed to obtain boundary conditions sufficiently close to the actual boundary conditions.

The inverse technique is the upper bound approximation technique described in
Paragraph 2.2.3. When the correct strain distribution pattern is assumed, the approxi-
mation solution is the correct solution.

2.2.3 Approximate Solutions

The principles of minimum potential and complementary potential energy as de-
scribed in Paragraphs 1.7.2.3 and 1.7.2.4 do not depend upon the siress-strain relation-
ship. They can be employed to obtain upper and lower bounds to the solution of linear or
non-linear problems. For example, assuming an incorrect displacement or strain distri-
bution which satisfies compatibility and the boundary displacement conditions will under-
estimate the stiffness of the structure, i.e., will overestimate the strain energy {expressed
in terms of the displacements) as well as the work done by the surface and body forces. If
a virtual displacement is now applied to the incorrectly assumed displacement pattern, the
calculated change in strain energy is greater than the work done by the true forces in acting
through this virtual displacement. I only one force is acting (.e.g., axial Ioad on column),
the calculations will result in an upper bound of the applied force if the change of strain
energy is expressed in terms of the displacements. If the change of strain energy can be
expressed in terms of the forces, a lower bound of the applied force can be calculated,

Assuming an incorrect force or stress distribution, which satisfies equilibrium and
the boundary force conditions, will overestimate the stiffness of the structure, i.e., will
overestimate the complementary strain energy (expressed in terms of the stresses) as well
as the complementary work done by the surface and body forces. Applying a virtual force
system to the incorrectly assumed force system can result in a lower or upper bound on the
displacement by expressing the change of complementary strain energy in terms of the forces
or displacements, respectively.

The above techniques are employed in obtaining the stability of structures (Section 9).

They can also be employed to analyze plastic beams subjected to axial and bending loads (in
which linear strain distributions are assumed across the beam cross section). Another
application is the determination of an upper bound to the ultimate load of an axial tension
member subjected to a stress concentration such as a hole. The strain distribution which
corresponds to the linear elastic solution to the problem satisfies compatibility even when
multiplied by an arbitrary constant. Employing this strain distribution with a non-linear
stress-strain relationship, such as presented in Section 3, will result in stresses and an
.integrated axial load. Assuming a maximum strain criterion of failure will result in an
upper bound on the axial load when the maximum strain is attained at the "stress' concen-
tration.
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SECTION 3 - MATERIAL CONCEPTS

The ability of a structure to withstand the applied loads is dependent upon the material
properties as well as the structure geometry. The material properties are sensitive to the
type and magnitude of loading, the temperature, and the chronological history (time) ofthese
factors. The problem would not be so complex if the principle of superposition could be ap-
plied. Unfortunately, this is only approximately true and then for only small stresses, tem-
peratures and times,

In general, the structural stiffness will be different from point to point in the structure

and will change with load (stress), temperature, and time. The structure becomes an ex-
ceedingly difficult non-linear problem. Recourse i8 made to deformation theory and approxi-

mate methods to solve the problem as if a series of incremental changes occur, each of which
I8 a linear problem with a unique solution until the total loading history is applied.

The exceedingly large number of materials and load-temperature-time histories that
are possible makes it absolutely imperative to try to represent the behaviour of structural
materials as functions of a few materlal parameters. From a practical design analysis point
of view, It is desirable to limit the number of parameters while still retaining an acteptable
engineering approximation to the strain relationship. This would permit a relatively simple
mathematical expression to interrelate the equilibrium and compatibility equations of Section 1
(which are independent of the stress-strain relationship) to obtain structural solutions. It is
also desirable to present the strain relationship in a non-dimensional form to minimize the
computational work and to permit non-dimensional graphical solutions of the structural problem.
This technique can be utilized in the designofa structure with minimum guaranteed properties.

‘The stress-strain relationship suggested in this manual is predicated upon empirical re-
lationships which approximate experimental data. A deformation mechanism is assumed which
does not contradict experimental evidence and which leads to three (temperature dependent)
parameters for the short time stress-strain relationship and in addition, two additional para-
meters to include the effects of time. Methods of determining these parameters from simple
test data are indicated.

The following symbols are used throughout this section:

t Time, seconds

01 Short time (instantaneous) measure of slip (CIKT sinh 0'/00) in which no primary
or secondary creep occurs, non-dimensional

C Measure of primary creep (C (l—ét) K‘I‘ sinh o/c_) due to "relaxation," etc. ,

2 . 2 o

non dimensional

03 Measure of secondary creep (C3 t KT sinh cr/oo) as the rate of "strain hardening"
is balanced by the rate of "softening by recrystallization," 1/sec

C 4 Material constant representing the number of particles per unit time exceeding
the thermal potential barrier

E Elastic modulus (material-temperature parameter) associated with hydrostatic
stress and dilation, psi

E A Apparent elastic modulus of material (obtained from short time stress-strain
curve), psi

E Secant modulus = g/€ (psi)
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t=

T Tangent modulus = do/d € (psi)

Time-temperature work hardenability material parameter directly proportional
to slip = (Kt) (I{r), non ~dimensional

K, Time component of K, non-dimensional

K‘l‘ Temperature component of K, non-dimensional

KT C 4 Q/T (Suggested by Maxwell-Boltzmann Energy Distribution, Reference 3-2)
L. M. Larson-Miller parameter = T (C + log t)

Q Material constant - activation energy per gram atom divided by the universal gas

constant, °K

B KE o =temperature, time, material parameter (8 = 0 elastlc material;
A/ o B = 1 viscous material)

& Deviation =€-0 /E A

Ag Stress increment

€ Strain, in/in

é Strain rate, in/in/sec (dot over symbol indicates derivative with respect to

time, e.g., Kt. o)
€ Instantaneous strain due to stress= o/E + ClKT sinh or/cro, in/in

o Applied stress, psi
) Stress assoclated with slip. This is a material -temperature parameter which is

a function of the past history of the material, i.e., stress-temperature-time, ete.,
psi

Subscripts

1,2,3, Principal directions
I, I, I Invariant values of stress and strain
i Dummy index

Superscripts

‘Prime Deviations, e.g.; u'i and e'i
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3.1 DEFORMATION MECHANISM

Deformation is viewed as the movement of atoms from one equilibrium position to
another. The energy potential necessary to overcome the potential barrier, i.e., to ini-
tiate and continue the motion, is absorbed from the environment; stress potential, tem-
perature, etc. (See Figure 3.1-1). This movement, or slip, occurs initially along planes
in crystals where the stress and temperature potential first attains the value of the potential
barrier. The external potential (temperature and external loading) necessary to initiate
this slip is reduced by dislocations along the shear plane which locally increases the stress
potential. The dislocation then migrates to the boundary of the crystal at which time the
deformation along the '"favored" planes ceases. No more deformation can occur until the
energy potential is increased. This phenomenon is known as "strain hardening". K the
thermal and residual siress potential is quite small, a reapplication of the applied load would
indicate no significant slip would occur until the applied load exceeds the previously applied
load.

Continuing to increase the applied load causes planes in other crystals to attain the
necessary potential to sllp. Simultaneously, the movement of dislocations to the crystal
boundaries increases the internal stress potential at the boundaries which, when coupled
with the external potential (thermal and stress), causes the deformed crystal to grow at the
expense of its neighbors. This phenomenon is known as "softening' or recrystallization”.
The growth is in the orientation of the "favored" crystal so that the initial slip can now be
permitted to continue by moving the dislocation to the new boundary of the crystal {which
continues to expand). Thus the total slip is a function of the previous slip and implies an
exponential type of stress function (Reference 3-1). The amount of slip is extremely sen-
sitive to temperature (thermal energy). Statistical thermodynamic considerations indicate
that an exponential expression which expresses the probability that the atoms will have the
required thermal energy would define the effect of temperature on slip (Reference 3-2).

Anocther factor should be considered. As the deformation proceeds, it induces
residual stresses in the surrounding crystals which then seek a state of equilibrium corres-
ponding to a lower energy state. This phenomenon is known as "relaxation' if it occurs under
load and "retarded memory" if it cccurs under no load after being stressed beyond the
"elastic 1imit™ of the material. Both are evidenced by an increase in strain which is ex-
ponential in form since its value depends on the instantaneous value of the residual stress.
This residual stress, in turn, depends upon the amount of alleviating strains. The residual
stress and strain hardening process can account for the "Bauschinger effect” wherein the
yield stress is increased in the direction of original loading to a greater extent than in the
reverse direction, as well as for the heat treating and annealing phenomena.

The phenomenon of creep can be viewed as a continuation of slip under constant
load. The first stage of creep is a relaxation which proceeds exponentially with time
[02 (l-e‘t)] while the second stage occurs when the strain hardening rate equals the re-
3

considered to be 2 manifestation of material failure and is not included in the strain rela-
tionship.

crystallization rate resulting in a constant slip rate [C t ] . The third stage of creep i8
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3.1 (Cont'd)

SHEAR
e ———

{o) INITIAL {b) UNSTABLE (¢) FINAL
EQUILIBRIUM EQUILIBRIUM EQUILIBRIUM
b
ENERGY I
POTENTIAL POTENTIAL BARRIER
qQe— 1 - C

{(d) SLIP - SHEAR DIRECTION

FIGURE 3.1-1 DEFORMATION AND ENERGY POTENTIAL UNDER SHEARING ACTION

3.2 STRESS-TEMPERATURE-TIME-STRAIN RELATIONSHIP

This relationship, presented in Paragraph 3. 2. 1,is predicated on experimental data ob-
tained from short and long time uniaxial load tests. The mathematical formulation is in terms
of material constants which are selected so that the calculated strain curve closely approxi-
mates the experimental curve in the regions of interest, Methods of obtaining the material
constants from simple uniaxial tests are indicated in Paragraph 3.2, 2, Methods of extrap-

olating the relationship for complex loading conditions (biaxial, etc.) are shown in Pzaragraph
3.2.3.
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3.2.1 IIniaxial Stress-Strain Relationship

Strain can be viewed as composed of two components. One component is elastic
(assumed linear) and is associated with the volumetric change (dilation) without distortion
due to hydrostatic load. The constant ratio of stress to strain (E) is a material temperature
parameter. The other component is inelastic and is associated with distortion (slip) without
volumetric change due to shearing load. The slip is assumed proportional to the hyperbolic
sine of the stress ratio (as suggested by Reference 3-1) and proportional to a time-temperature
constant which varies exponentially with temperature and time, The initial slip for small
stresses is almost linear, thus the apparent (initial) modulus (E A) of the stress-strain curve

is slightly less than the true modulus E, This would suggest that the (E A} modulus determined

by dynamic methods would be more consistent and higher than that determined by stress-strain
curves at high temperatures (which will contain some inelastic effects,e,g., creep, relaxation,
ete. ).

) The following stress-strain curve is assumed:

€ = ¢/E + K sinh cr/so (la)
where
€ = gtrain (in/in)
E = elastic modulus (material-temperature parameter) associated with hydrostatic
stress and dilation, psi
o = applied stress, psi
o, = stress associated with slip. This is a material-temperature parameter which is
a function of the past history of the material, i.e., stress-temperature-time, psi
K = time-temperature work hardenability material parameter directly proportional
to slip = (Kt) (KT), non-dimensional
K = time component of K=C, +C, (1 - e ) + Cgqt, non-dimensional (1b)
01 = short time (instantaneous) measure of slip (C KTsmh o/o- ) in which no primary
or secondary creep occurs, non-dlme{:sional
02 = measure of primary creep (C (1-e™) K sinh o/c ) due to "relaxation", etc.,

non-dimensional .
= measure of secondary creep (Cg t Ky sinh o'-/ao } as the rate of "strain hardening"

is balanced by the rate of "softening by recrystallization™, 1/sec
= temperature component of K, non-dimensional

= c4e—Q/'r

0
(%)

(Suggested by Maxwell-Boltzmann Energy Distribution, Reference 3-2)

Q = material constant - activation energy per gram atom divided by the universal gas
constant, K

4 - material constant representing the number of particles per unit time exceeding the
thermal potential barrier .

C

The generalized strain relationship, which includes the effects of temperature and time
as well as stress, can be employed to obtain short time or isochronous (constant time) stress-
strain and stress modulus curves (See Figures 3. 2, 1-1 through 4). The temperature effect
is contained in the dopondencyof the material parameters upon the temperature and the time
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3.2.1 (Cont'd)

KE &
B,-: o
B2
B KEy
3 g, Bz By
o/, o/, 3
€
%  5—(1-B )+ SINH o7 0%
Epe€ o Es I
To Ea
FIGURE 3.2.1-I FIGURE 3.2.1-2
NON- DIMENSIONAL NON - DIMENSIONAL
STRESS-STRAIN CURVES SECANT MODULUS CURVES
KE
By B, Broo
By a
B3 BZ I To
T/0, T/0,
0 Er/Ey : 0 Ey/Eq '
FIGURE 3.2.1-3 FIGURE 3.2.1-4
NON- DIMENSIONAL NON-DIMENSIONAL
TANGENT MODULUS CURVES TANGENT-SECANT MODULUS

RATIO CURVES

WADD TR 60-517 3.7



3.2.1 (Cont'd)

effect is incorporated in the g item described below. The variation of the material para-
meters with temperature must be determined from experimental data. Initial investigation
in this direction has indicated that the functional relationship is smooth and that fnterpola-
tion should give satisfactory accuracy.

Another justification of the assumed strain relationship is the similarity in formulation
to the various diffusion rate processes found in the literature {e.g., Reference 3-3 and 3-4),
These formulations agree satisfactorily with the experimental evidence and are employed with
available strength and creep data to obtain interpolated or extrapolated strength data, As an
example, the Larson-Miller parameter, employed as a correlation parameter (Reference 3-3
and 3-4), is equivalent to the energy of activation Q for an unstressed material, and should
be modified by a stress factor if it soaks under load,e.g., L.M.= T (In Cy+int+ o-/oro).

The generalized relationship, Eq. (1a) can be manipulated to obtain equivalent stress-
strain, secant modulus, tangent modulus, etc., curves and to devise methods to determine
material parameters used in design from simple uniaxial short time and long time data,

The generalized relationship can be utilized in the same way that a room-temperature stress-
strain curve is employed to get allowables, The results are presented in a non-dimensional
form in terms of the material design parameters.

Let
EA = apparent elastic modulus of material {obtained from short time stress-strain
curve)
ET = tangent modulus = do/de (psi)
Eg - secant modulus = o/€ (psi)
B =KE A /00 = temperature, time, material parameter (3 = 0 elastic material;
B =1 viscous material),
Then
E-E,/1-8
EAG o
p = (1-8)+ g sinh o/g_ (2a)
o 0
E E.€
(/)
8 o
Ea
E.~ = (1-B) + Bcosh ofa, (2c)
T

Figures 3,2.1-1 through 4 illustrate the non-dimensional form of the stress-strain, secant
modulus, and tangent modulus curves resulting from Eqgs. (la), (2a), (2b) and (2¢). This data
is utilized in Section 9 on the stability of structures,in which the effective modulus is some
combination of E A’ ET and ES‘ and also for use in obtaining approximate solutions of non-

linear problems (Reference 3-5).
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3.2.2 Experimental Determination of the Material Constants

The material constants are selected so that the mathematical formulation of
the strain relationship satisfactorily approximates the experimental data.

3.2,2,.1 Apparent Modulus (E A)

The apparent modulus E, is obtained as the initial slope of the short time
stress-strain curve as shown in F e 3.2.2.1-1. It may be obtained from the natural
frequency of an axial bar or torsional rod if inelastic effects cannot be eliminated from
the short time test. The time at stress and the magnitude of the stresses should be small
so that the non-linear components are insignificant.

e=§+ K SINH 0 /0o

3= ei_(%iA_)

FIGURE 3.2.2.1-1 SHORT TIME STRESS-STRAIN CURVE
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3.2.2.2 Slip Btress (oo)

The stress (o-o) which is associated with slip can be determined from a short

time stress-strain curve if the creep effect is negligible, The technique is shown in
Figure 3. 2. 2. 2-1 in which the deviation § = €-uv/E A is plotted logarithmically versus o.

If the creep effect cannot be ignored,then 0, can be determined from constant creep

rate data shown in Figure 3. 2. 2. 2-2 in which the constant creep is plotted logarithmically
versus o, Justification of this technique follows and is based on the property that the
sinh x i8 approximately e*/2 for large x. From Eq. (la) of Paragraph 3. 2. 1

€=g/E + K, KT sinh cr/oro

C,K

- e — ; 1°T o/o
5 = €-o/E = K K sinh cr/aoN 5 e’"o (1a)
where t—e 0 and cr/a'o >1
c1
Ing =ln —— +ofo, {1b})
C
log 6 = log 1;{'1‘ + 213 (0'/0'0) (1lc)
On a semi-log plot, (lc) is an equation of a straight line of the form
y =b+mx ,
C
where y =log 5, b= log 112(T, X=g
_ 1 _ _ A _ A(ogé)
and m= (1/00) =tan o = A = Ao .
1 A 1 %9 (2)
o= == = (See Figure 3.2.2,2-1)
o 2.3 Aflog 6) 2.3 log (612/611)
Similarly,
€= o/E + KK, sinh 0'/0'0 + KK _sinh 0/0'0 (3a)
= KK, sinh a/o'o (for constant stress creep test) (3b)
c
€ = ——-32£-T— ea/oo (for t—= o, cr/ao >1) (3c)
- c3
In € = In 5 + 0/0'0 {3d)
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3.2,2,2 (Cont'd)

" cs 1

log é = log —5— + 373 (9/9)
1 Ag
% T 2.3 “A(log €) (Reference Figure 3.2, 2.2-2) (4)
0'2 - 0’1

1
o = (—) —_—
o 2.3 log (612/611)
3.2,2,3 Work Hardenability Factor (K = KtKT)

The value of X can be obtained from data shown in Figures 3, 2.2.2-1
and -2 and Figure 3, 2.2.3-1, CIKT is obtained from the intercept of the stralght

line in the deviation versus stress curve (Figure 3,2, 2, 2-1), Czl(.r is obtained from

the intercept of the straight line in the strain versus time curve (Figure 3.2, 2, 3-1).
03KT is obtained from the intercept of the straightline in the creep rate versus stress

(T2, 01)
/ (%, )

Cz K1 SINH ¢/ 0

curve (Figure 3.2, 2, 2-2).

C2KT SINH o/ oo

11— IC, KTSINH 0,/Cp
€ =
o/E ao(t=0)

FIGURE 3.2.2.3-1 CREEP CURVE

3.2,.2.4 Interpolation of Material Parameters

An increase in temperature or a soaking at temperature will decrease the
magnitudes of the material parameters. The temperature potential reduces the mag-
nitude of the stress potential necessary to induce slip. The temperature also increases
the rate of recrystallization and relaxation which reduces the strain hardening. Pre-
liminary plots of the material parameters versus either a temperature or an equivalent
soaking parameter {e.g., Larson-Miller Parameter} have indicated that the results
should be relatively smooth curves as exemplified in Figure 3.2.2,4-1. In order to
employ the non-dimensional techniques proposed in this section, it would be expedient to
compile data (E A’ %o CIKT‘ CzKT’ C 3KT) on the various structural materials in the

manner shown in Figure 3,2.2.4-1.
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3.2.2.4 (Comt'd)

=

T OR T(C+logt)

FIGURE 3.2.2.4-1 VARIATION OF MATERIAL PARAMETERS WITH TEMPERATURE

3.2.3 Complex Loading

It is possible to describe the stresses and strains in a material by functions
(tensors) which are capable of expressing the state of the stresses and strains at a point,
They can always be expressed by the direction and magnitude of their principal components
{stresses or strains). For an isotropic material, the principal directions of stress and
strain coincide. Associated with the stress or strain are three invariant magnitudes which
are independent of the direction of reference. These three invariant magnitudes, or any
three combinations of all three quantities, define the tensor. It is assumed that a relation-
ship exists between the invariants of the stress and strain tensors. The uniaxial stress-
strain curve would then be an expression of this relationship which is quite simple to obtain
experimentally and could be :mployedto obtain the stress-strain relationship for more com-
plex loadings.
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3.2.3.1 Invariants

The three quantities which are characteristic of the stress and strain
tensor can be expressed as follows:

Let
0'1,0‘2,03 = principal stresses
€1°€97€3 = principal strains
Then
0y = first stress invariant - hydrostatic pressure (la)
=1/3 @+ o, + 03)
On = second stress invariant - octahedral shear stress
=1/3 \/(01 - orz)2 t o, - 03)2 + (o4 - 01)2 (1b)
Oy = third stress invariant
_1/3 Y G0y (@) (1c)
cri' = principal deviatoric stress = cri - UI (1d)
€1 = first strain invariant - dilation
:1/3(51+62 + &) (2a)
€ = second strain invariant - octahedral shear strain
=1/3 \/(e1 —e)? ey -eg) * leg e ) (2b)
€ = third strain invariant
-1/3 ,\7 (€)) (e)) (e3) {(2c)
ei' = principal deviatoric strain = € - GI (2d)

Associated with the principal directions (1, 2, 3) are 8 (octahedral)
planes which make equal angles (arc cos 1/ Jg) with the principal axes. On these

planes, the normal stress and strain are O'I and €p respectively, and the tangential

{shear) stress and strain are UII and €11 {See Figure 3.2.3.1-1). I it is assumedthat

the relationship between the normal stress and strains and the tangential stresses and
strains are independent (orthogonal) of each other and are uniquely defined for any
material, then the invariant stresses and strains for a complex loading can be related to
those obtained for a simple one, such as uniaxial tension. Thus, the physical model
corresponding to Figure 3, 2, 3.1-1 suggests that those crystal planes which are oriented
so that the applied loads produce higher octahedral shear stresses will slip first (assum-
ing dislocations are uniformly distributed) and that these crystals "strain-harden" re-
quiring higher stresses to cause further slip in these and less favored crystal planes.
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3.2.3.1 (Cont'd)
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FIGURE 3.2.3.1-1 PRINCIPAL DIRECTIONS AND OCTAHEDRAL PLANES
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3.2.3.2 Transformation of Stress-Strain Relationship

The hydrostatic components, stress (crI) and strain (eI) are assumed to vary

linearly with volumetric deformation but without any permanent deformation. Experi-
mental evidence indicates that the assumption is quite satisfactory for the ranges of

stress-temperature experienced. The relationship between the octahedral components
of stress (O'F) and strain ( eH) is assumed to be non-linear, with no volumetric defor-

mation, and to constitute the inelastic portion of the stress-strain relationship (Eq, (1a)

. oy . (1+v )/z’cle . 3y
I (IF)E 3 sioh ——— .

A N Ty
Figures 3. 2. 3. 2-1 through -4 illustrate how a uniaxial stress-strain curve

can be employed to derive a complex stress-strain curve. The uniaxial stress-strain

law is obtained experimentally as shown in Figure 3.2, 3, 2-1. The hydrostatic stress

and strain and the octahedral stress and strain are computed in Figures 3. 2. 3. 2-2 and

-3. The complex loading is employed to obtain strains from stresses (as shown in

Figure 3. 2. 3. 2-4) or stresses from strains, by assuming that the deviatoric to octahedral

stress and strain ratios are equal. This is implied by the von Mises yield criteria and

the Mises-Levy stress-strain rate relationship (see References 3-6 and 3-7), i.e.,

of Paragraph 3. 2.1). The relationship assumes

a.' g. -0 (53 ) .
i i I II 3

The invariant stress-strain relationships can be employed to postulate
allowables of combined loading conditions from allowable invariants of simple (uniaxial)
loading conditions wherever applicable, and to obtain approximate solutions to complex
problems (assuming a compatible strain distribution results in an upper limit of the
applied load, whereas assuming an equilibrium stress distribution results in an upper
limit on the displaceme nt of the structure).

WADD TR 60-517 3.17



3.2.3.2 (Cont'd)

T ‘TI T=T|
€
_‘_ ASSUMED LINEAR
7 Ty 1- _o_;_
3 Ea
-2V
|
1 Ea
£|:¢I+J-2€n GI: €|(|'2V)
3
FIGURE 3.2.3.2-1 FIGURE 3.2.32-2
UNIAXIAL STRESS-STRAIN HYDROSTATIC STRESS-STRAIN
CURVE CURVE
T=T, T= 7,
% - 5.
oy f'_l\/_g - f “ A =CONSTANT
3 ASSUMED da
o
“mrvng, 3 S’N”Ea'f'
€n=€1(l;—nﬁ / €4=;—nn_ (UQ_O-I) + €1
FIGURE 3.2.32-3 FIGURE 3.2.3.2-4
OCTOHEDRAL STRESS-STRAIN BIAXIAL STRESS-STRAIN
CURVE : CURVE

WADD TR 60-517 3.18



3.3 REFERENCES

3-1

Nadai, A., The Influence of Time Upon Creep; The Hyperbelic Sine Creep
Law, 8. Timoshenko, Anniversary Volume, MacMillan Co., p 155, New York,
1938.

Tolman, R. C., Principles of Statistical Mechanics, Oxford University Press,
p 71, 1938.

Conrad, H., Correlation of High Temperature Creep and Rupture Data, ASME
Preprint Paper No. 58-A 98,

Heimerl, G. J., Time-Temperature Parameters for Rupture and Creep of
Aluminum Alloys, NACA TN-31235.

Mendelson, A., Hirschberg, M. H., Manson, S.S., A General Approach td
the Practical Sclution of Creep Problems, ASME Preprint 58-A 98,

Ven Mises, R., Gottinger Nachr., Math. -phys, Kl. p 582, (1913),

Le'vy, M., C.R. Acad. Sci., Paris, 70,-1323 (1870).

WADD TR 66G-517 3.19






WADD TR 60-517

SECTION 4

THERMOQ-ELASTIC ANALYSIS OF BEAMS







4.1.1

4.1.1.1

4.1.2.1
4.1.2.2
4.1.2.3

4.1.2.3.1

4.1,2,3.2

SECTION 4

THERMO-ELASTIC ANALYSIS OF BEAMS

TABLE OF CONTENTS

Title
Thermo-Elastic Analysis of Beams

Thermo-Elastic Analysis of Statically Determinate (Un-
restrained) Beams

General Solution
Elastic Section Properties of Cross Section

Stresses and Deformations of the Cross Section Due to
Temperature

Stresses and Deformations of the Cross Section Due to
Combined Mechanical and Thermal Loading

Evaluation of Integrals

Solution by Finite Sum {with illustrative problem)
Geometry of Concentrated Elastic Areas - Sandwich Beam
Power Series Solution - Bending About One Principal Axis

Polynomial Approximation of a Given aT Distribution (with
illustrative problem)

Binomial Representation of Continuous Elastic Cross Sections

Solution for Continuous Elastic Cross Sections (with
illustrative problem)

Solutions for Discontinuous (Multi-Rectangular) Elastic Cross
Sections (with illustrative problem)

Power Series Solution - Corrections for Bending About Both
Axes

WADD TR 60-517 4.1

4.6

4.7
4.9

4.9

4.11
4.20
4.21

4,23

4,28

4,58



TABLE OF CONTENTS (Coni'd)

Title
Statically Indeterminate (Externally Restrained) Beams
Beam Deflections (with illustrative problem)
Fixed End Reactions
Sign Convention
Applied Beam Loads
Determination of Fixed End Reactions
Determination of Fixed End Reaction for Special Cases
Use of Equations and Graphs
General Solution of Statically Indeterminate Beams
Degrees of Freedom
Equivalent Loading
Mechanics of Solution by the Flexibility Method

Mechanics of Solution by the Stiffness (Slope-Deflection)
Methed

Selection of Method of Analysis

Problem IA - Statically Indeterminate Beam by the Flexibility
Method

Problem IB - Statically Indeterminate Beam by the Stiffness
Method

Problem II - Sandwich Beam by the Flexibility Method
Curved Beams

Values of €', w! and M

WADD TR 60-517 4.2

Page
4.58

4.58

4.65
4.67
4.76
4,81
4.86
4.86
4.87
4.88

4.92

4.95

4.101

4.103
4,105

4,108



TABLE OF CONTENTS (Cont'd)

Paragraph Title
4.2.7.2 Special Cases _
4.2.7.3 Sample Problem - Frame Subjected to Thermal and

Mechanical Loads

4.3 : References

WADD TR 60-517 4.3

Page
4.109

4.112

4,117



SECTION 4 - THERMO-ELASTIC ANALYSIS OF BEAMS

The thermal loading on a beam reduces the stiffness (increasing deformations due
to mechanical load), and in general induces thermal stresses and deflections. If the beam
is unrestrained externally (statically determinate) then thermal stresses can only occur
due to the internal requirements that plane cross sections before bending remain plane after
bending, provided that the undeformed heam does not exhibit sharp curvature (R/d < 5).
Experimental evidence does not violate this assumption. If the beam is restrained external-
ly (statically indeterminate), additional thermal stresses will be caused by the redundant
restraining forces.

The thermo-elastic analysis of beams, with all of the above factors contributing to
the problem, is presented. General solutions are given and methods are presented for the
numerical solution of specific problems.

The following symbols are used throughout this section:

Non-dimensional thermal strain ratio; Distance from fixed end to initiation of

a
load

a,a' Coefficients of polynomials

b Width of cross section

c Exponent defining variation of 1/(EI)

d Distance from reference axis to an extreme fiber

e Non-dimensional width parameter

f Virtual axial force caused by unit virtual loads

f]. o Influence coefficient for fixed end axial reaction (see text, Paragraph 4.2.2.3)

h Height

j Exponent defining variation of curvature

k Exponent defining variation of axial load; Integer indicating rectangle location

m Virtual moments caused by unit virtual loads

m, . Influence coefficient for fixed end moment reaction (See text, Paragraph 4.2.2.3)

m,n Integers

p Virtual shear loads caused by unit virtual loads

pj c Influence coefficient for fixed end transverse reaction

q Variable transverse load

by Exponent defining variation of transverse loading

s Non-dimensional distance u/d

u,v Distance from reference axes which are oriented parallel to elastic principle
axes

u Distance from v reference axis to elastic centroid

W Change in rotation of cross section per unit distance (curvature) due to

mechanical loading
w! Change in rotation of cross section per unit distance (curvature) due to
thermat loading

Wy Total change in rotation of cross section per unit distance, W =W +w!
x Distance along length of beam

x) Function of x

¥,Z Distances from arbitrary but perpendicular reference axes
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- nydA szdA

¥,z Distances f EdA  ’ IE A from Y, Z reference axes to elastic centroid
Y. % Distances f%{ﬁ.ﬁiA , I%ZQTTdiA from Y, Z reference axes to location of
resultant force on the cross section
A Area = f dA
AA,dA Small element of area
BJ. Level of aT at point "j'" above the reference axis value of aT, Bj = aj Tj-onT0
E Modulus of elasticity = E(T)
Eb Elastic width = E @ vg)b
EA Effective axlal stiffness or force required for unit axial deformation, fEdA
EI Effective bending sztiffness or moment required for unit rotation,
EL- = JE ¢-¥)° da
F Axial force due to mechanical loading
F! Restoring axial force due to temperature, F' = f EaTdA
S‘L Total cantilever axial load at L due to mechanical loads
I Moment of inertia of cross section, I_- = / -7) dA
I0 Moment of inertia of an element of area about its centroidal axis
K Non-dimensional shape parameter .
L Length of beam; Power of general term of the oT polynomial
M Bending moment due to mechanical loading _
M' Restoring bending moment due to temperature, M' 7z = -~y f EaTdA
mL Total cantilever moment at L due to applied mechanical load
P Transverse-load due to mechanical loading
ﬁL Total transverse cantilever load at L due to applied mechanical loads
T Temperature change from a datum value
Uu, vv Elastic principle axes
Y, Arbitrary reference axes
a Mean coefficient of expansion
aT Strain due to free thermal expansion
B Non-dimensional taper parameter
¥ Axial strain parameter
4 Non-dimensional rotation parameter
€ Strain
€' Axial strain at elastic centroid due to thermal loading
€ Axial strain at elastic centroid due to mechanical loading
€, Total axial strain at elastic centroid, & = €+ €'
£ Non-dimensional length parameter defining distance from initiation of load on beam
7 Non-dimensional step parameter _
A Non-dimensional axial stiffness, A= EA/dEobo
T Variable axial load (shear flow) _
T Non-dimensional elastic centroid location, u=u/d
v Non-dimensional length parameter = a/L; Non-dimensional bending stiffness
v = EI/d3E b
00
o Stress
A Deflection
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. Subscripts

Anti~symmetrical

Combined th

At location of k™ rectangle

Due to mechanical loading

At extreme fiber location

At reference axis location

Symmetrical

Due to temperature

u, v, uu, vv About principal axes

¥:Z,yy, 2z About arbitrary but perpendicular reference axes

"mOﬂBWOW

V¥, ZZ About y, z centroidal axes

O Free end of cantilever beam th

L Fixed end of cantilever beam, left side; Due to L™ term of aT paolynomial
R Fixed end of cantilever beam, right side

4.1 THERMO-ELASTIC ANALYSIS OF STATICALLY PETERMINATE (UNRESTRAINED)
BEAMS

This Sub-section 4.1 presents methods for determining the deformation and
stresses of an unrestrained beam subjected to temperature variations through the beam
cross section. The section properties for the general case of variable modulus (due to
temperature and construction) are given in integral form for the purpose of determining
the response of the cross section to both temperature and load. The general solution is
then presented in integral form and is evaluated by the methods of finite sum and power
series.

The finite sum solution is the most general of those discussed and requires a
minimum amount of engineering ingenuity to set up and evaluate tables. It should be used
in cases where the directions of the principal axes are not obvious. The power series
method, though not as accurate as the finite sum solution, gives a more rapid means of
obtaining analytical solutions through the use of approximating analytical functions. The
use of approximating functions is further justified by the fact that the functions are to be
integrated, thus improving the accuracy of the approximation.

If the beam is unrestrained externally (statically determinate), then the solution
presented in this sub-section defines the deformations (axial strain and change of curvature)
and the cross sectional stresses. If, however, the beam is restrained externally (statical-
ly indeterminate), additional thermal stresses will arise due to compatibility forces (re-
dundants), at the boundary. The deformations of the cross section, obtained in this Sub-
section, allow the determination of beam deflections and are thus essential to the thermal
solution of indeterminate beams ag outlined in Sub-section 4, 2.
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4,1.1 General Solution

The following paragraphs present the general thermo-elastic solution for an un-
restrained beam in integral form, as derived in Reference 4-1. Evaluation of these integrals,
which causes most of the difficulty in obtaining numerical solutions to specifie problems, is
discussed in Paragraph 4.1.2,

The following assumptions and limitations apply to the thermo-elastic solution of the
unrestrained beam:

(a) Plane cross sections before bending remain plane after bending. This is thebasic
assumption in all bending problems. Experimental data indicate that this requirement for the
deformations of the cross section is sufficiently accurate for engineering analysis.

(b) Material is linear elastic at any temperature. Thus a single relationship of
stress to strain (o0 = E ¢ ) can be utilized to connect the equations of deformation and equili-
brium and the principle of superposition can be employed. Any plasticity, buckling, or creep
would modify the results, usually by reducing the peak stress but increasing the deflections,

(¢} The variation of the cross section and temperature along the length of the beam
is both continuous and smooth, and does not produce any significant shear forces, Significant
shear forces occur in the vicinity of these abrupt changes (heat sinks, free and clamped ends,
and abrupt changes in cross section) and the solution must be modified to account for these ef-
fects, These effects should be insignificant at distances greater than the order of the dimen-
sions of the cross section (St. Venant Principle). For example, Reference 4-2 shows that at
distances of approximately three heam depths away from free ends, solutions obtained under
the assumptions of plane cross sections remaining plane are valid.

The unrestrained beam subjected to temperature (see Figure 4, 1.1-1) is analyzed
by subjecting the beam to a set of force systems which satisfy equilibrium and produce defor-
mations which are compatible with the requirement of plane cross sections remaining plane
after bending.

Consider a unit length of beam. Initlally, each fiber of the beam is liberated from
the influence of its neighbors. The temperature distribution is then applied to the beam which
causes each fiber to expand by an amount oT. In general, the thermal expansion of the fibers
will cause the cross sectional plane formed by the ends of the fibers to warp. To satisfy the
requirement of plane cross sections remaining plane, a pressure loading of -EaT is applied
to eliminate the thermal expansion and return the cross section to its original position and con-
dition (plane). This pressure loading upsets the equilibrium of the eross section. An axial
load (F' = f EaTda, equal in magnitude but opposite in direction to the force on the cross sec-
tion due to the pressure) is applied at the elastic centroid of the cross section. This balancing
axial forece causes pure translation without rotation of the cross section plane so that the re-
quirement of plane eross sections remaining plane is not violated. Rotational equilibrium still
remains to be satisfied since the location of the resultant restoring force ¥, in general, will
not coincide with the centroid of elastic area y. Equilibrium is achieved by applying a bal-
ancing moment to the cross section of sufficient magnitude (M' = [ -y ]F‘ ) to cause pure ro-
tation of the cross sectional plane,
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4,1.1 (Cont'd)

The superposed force systems now satisfy equilibrium and produce deforma-
tions which are compatible with the requirement of plane cross sections remaining plane.
Thus, the procedure outlined above must vesult in a stress-deformation distribution for
an unrestrained beam which is consistent and unique under the assumptions.

i

Elastic '7

Centroid

Location of Resultant
Restoring Force

FIGURE 4.1.1-1 ELASTIC AREA CROSS SECTION
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4.1,1.1 Elastic Section Properties of Cross Section

The structural response to both mechanical loads and thermal stimulae is governed
by both the effective bending (EI) and axial (EA) stiffness of the cross section. The equations
for these properties, which are stated below, are identical to those for cross sections having

constant E except that E is retained within the integral sign since it is permitted to vary
over the cross section.

EA = [EdA (1
y = [EydA/fEdA (2a)
z - [EzdA/[EdA (2b)
'IT:_Iy-y- = [E 22 - 22 [ EdA (32)
B; = [Ey'da-5 [Eaa oo
ﬁgg = [Eyzda -y z [ Eda (3¢c)
— - El- + EL- Jﬁﬁz z
(ET_ . EI ) = —Iy—-g————— 3 (——-YL§—~——) + (EI-) (4)

The distances y and z (Figure 4. 1. 1-1) to the elastic centroid are given by Egs. (2).
Thus, the elastic centroid, Eq. (1), is the centroid of the effective elastic area EA, not of
the geometric area, Similarly, the geometric moments of inertia are of no significance when
E varies over the cross section. The effective bending stiffnesses, Eq. (3), must be employed.

Equation (4), expresses the bending stiffnesses about the elastic centroid principal
axes in terms of the bending stiffnesses about arbitrary centroidal axes, The elastic princi-
pal axes are defined as those orthogonal axes for which

EI - [EuvdA =o.
uv

4,1.1,2 Stresses and Deformations of the Cross Section Due to Temperature

No thermal stresses are caused in an unrestrained isotropic, homogeneous, linearly
elastic body by an aT distribution which varies linearly in a rectangular coordinate system.
Clearly, in the particular case of an unrestrained beam, a linear oT distribution over the cross
section produces free thermal expansions which cause plane cross sections to remain plane
after deformation. No stresses are required to maintain the plane cross section

In general, a non-linear temperature distribution over the cross section would cause
free thermal expansions of the beam fibers which would warp a plane cross section out of plane,
Thermal stresses are produced which restore the plane cross section. In this respect, a tem-
perature distribution can be considered as a "thermal load" which, when applied in the absence
of mechanical load, still produces siresses and deformations.

Given below are the equations, derived in Reference 4-1, for the stresses and defor-
mations in an unrestrained beam due to thermal load.

WADD TR 60-517 4.9



4,1,1.2 {Cont d)

g = (1)
EA
. ﬁ(—EIﬁ Mo (EI-- ﬁ) 2
z —
Bl El--)- (EI-—)
'y (Pt 5] (T M1E;‘) (2b)
s 1--) (EI——)
o = E[—aT+€'+w'z(y-§)+w'y(z-g)] (3)
where
F' = onzT dA (4)
Y = [EaTydA/ [EaTdA (5a)
% = [EaTzdA/ [EaTdA (5b)
ML = T G-HEF (6a)
o= @- %) F (6b)

4.1.1.3 Stresses and Deformations of the Cross Section Due to Combined Mechanical and
Thermal Loading

For a linearly elastic beam, mechanical loads can be combined with thermal loads
simply by superposition. Thus
e, - (F+ ¥) (1)
EA
[-Elgg, M'zz ' Mz?]*[“;a M55 * Mg@)]

(w),~ pE— — (2a)
Dt (EL- Bl ) (BE-)®
yy 2Z vz
(), = [EIzz (Moo M;}?]*[E_Iﬁ Moz Mzz’] (2b)
vt (L. ET..)- (L. )
VY ZZ VZ
and, as in Paragraph 4.1.1.2
o= E[-aTrg ), v-Pr ) -] ®

Moments about the yy and zz centroidal axes are positive when their sense is such
that they tend to cause compressive stresses in the positive quadrant (quadrant where both
y -y and z - z have positive values). "F" is positive when tensile, and "T" is positive when
above a datum vaiue,
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4,1,2 Evaluation of Integrals

The solution of the thermo-elastic beamn problem requires the evaluation of the integrals
given in Paragraph 4. 1.1. Two methods of sufficient engineering accuracy are presented. In the
first, integrals are approximated by finite sums; in the second, the goemetry and temperature dis-
tributions are approximated by simple integrable functions (polynomials or power series). Approxi-
mate methods are justifiable since the functions must be integrated thereby improving the accuracy
of approximation.

4.1.2.1 Solution By Finite Sum

The cross section is broken up into a finite number of elemental areas, selected so that
the variation of T and E in each element is small. The procedure is adaptable to all cross sec-
tions and the degree of accuracy increases with the decrease in the size of the elements. Digital
computing machines can be employed (see Reference 4-3) to solve the problem.

The general solution is outlined in tabular form in Table 4, 1.2, 1-1 and illustrated by
the example which follows, with numerical results given in Table 4. 1. 2. 1-2. The number of tabular
columns and labor involved in solving the problem are considerably less when the following sim-
plifying conditions are realized:

(a) y and z axes coincide with principal centroidal axes u and v (example: axis of
symmetry)

(b) T is symmetrical about a principal axis of symmetry of the elastic geometry
(M‘ﬁor MTEE = 0)

Additional tabular columns are eliminated if E and &« are constant over the cross
section: Table 4,1, 2, 1-3 outlines the solution for the case in which all of the above simplifications
pertain,

The finite sum solution for the deformations of the cross section is based on an approxi-
mating geometry consisting of a finite numher of points of concentrated elastic area located at the
centroids of elements. Once the deformations ( €, Wy’ wz) have been calculated from the tabular

solution, stresses can be obtained at any points on the cross section as, for example, extreme
fiber points (see illustrative problem).
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4.1.2.1 (Cont'd)

The solution of an unrestrained beam by the finite sum method is illustrated
below for an unsymmetrical section with an unsymmetrical temperature distribution,
T = T {y,2), on the cross section of the Halcomb 218 "zee'" spar shown in Figure
4.1.2.1~2. Determination of the following is required:

(1) Thermal stresses and deformations

(2) Stresses and deformations when subjected to a moment about the vertical
axis of 10, 000 inch-pounds and an axial force of 10,000 pounds, i.e.:

M-~ = 10,000 inch-pounds
vy po

Mgz = 0
F = 10,000 pounds

The solution is worked out in Table 4.1.2.1-2 by the finite sum method. Stresses
are plotted in Figure 4.1.2.1-3.
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5.1.2 (Cont'd)
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5.1.2 (Cont’d)

[(ILE') + (T;E“_)le l:é‘ P;|=A¢—ij+Pj+1f+X(%) , (1)

T
G=1, 2. ..., N-1)

where
L -
Agp = (eT ~ eB) dx
0
and
f=f,1.+f]3

Eq. (1), together with the equilibrium Eq. (1) of Paragraph 5.1.1 yields the following solu-
tion for the joint loads:

PjN=[AjN+ Bin (E)T '(fl)]X+BjN AfL (2

where the suhscript jN refers to the jth attachment in a joint of N attachments. Values of
the coefficients AjN and BjN vs, Z,where

| (), |(2)-

are plotted in Figures 5. 1, 2-1(a) through -1 (j) for j=1—5 and N =2 — 20. Equations for
the numerical calculation of these coefficients are derived in Reference 5-1,

By interchanging the designation of the top and bottom covers, the curves presented can
be used to obtain all of the loads in joints having as many as ten attachments, When the total
number of attachments exceeds ten, the curves give the loads in the first five attachments from
either end of the splice,

The first term on the right hand side of Eq. (2) represents the contribution of mechanical
loading to the attachment load. The second term represents the contribution of thermal loading.
Thus, Eq. (2) conveniently separates the thermo-mechanical preblem into its superimposable
components. Note that for constant bay properties the thermal component of load at the center
of the joint must be zero from a symmetry argument. Therefore, the center bolt of an odd
number of bolts has no load due to thermal effects (Figure 5,1, 3-2), Because of this, B, =
335 = B47. «+. =0, as indicated in Figures 5. 1. 2-1, In addition, it is significant that when the

joint has constant bay properties, the attachment loads due to thermal leading alone are sym-
metrical about the center of the splice which yields BlN = _BN’N’ BZN =-B N-1)N etc.
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5.1.1 (Cont'd)

O\ NN 1

l:'j+l

o
-
X
}

J

PGy

I._ Pip o T Piafgenyn

P, j+1

-

I N R SN
B L) S
N

FIGURE 5.1.1-4 DEFORMATION OF THE JOINT DUE TO LOCAL DISTORTIONS
OF THE HOLES AND ATTACHMENTS

The compatibility Eq. (5}, which constitues- N-1 equations, together with the equili~
brium Eq. (1) provides N linear algebraic simultaneous equations for N unknown attach—
ment loads, Pj’ Since Eq. (b) is in the form of a recurrence equation, it can be used to

express all the attachment loads in terms of Pl’ the load in the firat attachment, that can

then be evaluated from the equilibrium equation. Solutions can also be obtained by solving
the simultaneous equations directly or by iteration and relaxation techniques. In general,
no simple relationships exist between successive Pj's. This difficulty arises from the fact
that the recurrence equation coefficients are variable since they are functions of flexibilities
and temperature distributions which may vary from bay to bay.

5.1.2 The épecial Case of Constant Bay Properties

Consider the case where the flexibilities of the sheets and attachments, as well as
the temperature distribution, are the same in each bay (constant bay properties). From a
practical point of view this situation is attained when the sheet thicknesses are constant,
the attachments are all of the same type, size and spacing, and when the temperature varia-
ton through the splice thickness does not vary appreciably in the direction of mechanical
loading. The coefficients of the Pj' 8 in the compatibility-recurrence Eq. {5} then become

constant and a general solution can be obtained with simple relationships between successive
Pj'B- Thus, Eq. (5) becomes
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5.1.1 (Cont'd)
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FIGURE 5.1.1-3 DEFORMATION OF THE JCINT DUE TO AXIAL STRETCHING
OF THE SHEETS
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The second basic type of joint deformation occurs because the internal joint loads
create local distortions of the holes and attachments as shown in Figure 5,1, 1-4, The
deformation is expressed in terms of an experimentally determined attachment hole flexi-
bility factor  f for the given attachment-sheet combination (Sub~section 5.3). Thus, for

the top sheet,

" - -
A% = P fgayt - Bifjr ()

and for the bottom sheet,
" — _
4 = Fplgns ' Be - (40)

ot i — Al LI - 1 " i
Substituting AjT A §T + A iT and AjB A jB + A iB from Eqgs. (3) and (4) into
Eq. (2) yields, after rearranging terms,

L L j ' ‘ L
Ly s Pl-Ag - Pf o+P L f o+ X[ 2o
i i j*1 7(j+1) 'S o (5}
(%), (® )][ )
L

where

) - -
A¢>j =f (ch-ejB)dx,

and

Walll) TTH tO-517 5.7



5.1.1 (Cont'd)
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FIGURE 5.1.1-2 ONE-DIMENSIONAL COMPATIBILITY

For the jth general bay the compatibility equation is

AT = 4B (2)
where the subscripts T and B refer to the top and bottom plates, respectively. For the
cne-dimensional case with no "slop" present, there are basically two types of deformation
which contribute tc the Aj. g ©f the joint,

The first type of deformation is the uniaxial stretching or contraction of the sheets due
to the combined effects of temperature and mechanical loading. Referring to Figure 5. 1. 1-3,
the uniaxial stretching for the jth bay is

j L.
] 3
A =(x-2 p )[L +f g... dx )
iT j=1 ! AE 0 iT
jT
i L (3b)
L -
Al =(Z P)(z) .+j € . dx
IBNia 1/ \AE/j o B
where a pesitive A increases the spacing between adjacent attachments and
h
EaTdy
- o
€ h
Edy
0

If the thermal gradient is linear through the thickness, then ¥ is approximately equal to the
value of oT at the plate midplane.
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5.1,1 The Joint Equations

Equilibrium

Figure 5.1.1-1 shows a long'iturtlgml section through a typical joint under consideration.
Denocting the shear load acting at the j  attachment by Pj' equilibrium of forces requires that

N -
X=§P, (1)

where a tensile applied load X and attachment loads acting to the right on the upper sheet are
considered positive.

L.
—
-— ////é\f//////f;\f//////i‘///////!\f
R R K R M ——
S
j j+1 N

3

aa— VI, N Y "//////W
SR B P PN
VAN T

{_

X

\’J

FIGURE 5. 1. 1-1 ONE-DIMENSIONAL JOINT EQUILIBRIUM

Compatibility Conditions

As shown in Figure 5. 1. 1-2, compatibility of displacements requires that the axial con-
traction or expansion of the plate material at the common surface, measured from a datum
(defined by the unloaded, unheated spacing between the centerlines of adjacent pins) must be
identical for the upper and lower plates.
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5.1 THE ONE-DIMEN_SIONAL PROBLEM

The general problem is simplified if the overall geometry of the joint does not allow
the joint to bend out of plane. Such conditions are realized when, for example, the joint
consists of a splice strap in a flexurally rigid beam flange as shown in Figure 5. 1-1. In
such a case, the problem is one-dimensional in that the joint displacements and attachment

loads are essentially dependent on the axial flexibility of the joint components in the direction
of the applied external loading.

st

FIGURE 5.1-1 SPLICE STRAP FOR A RIGID BEAM FLANGE

The sclution for the load distribution to the joint attachments is obtained by satisfying
compatibility conditions for the joint displacements and the equilibrium equation.

The following analysis is applicable to a mechanical joint composed of two arbitrarily
dissimilar elastic materials, It is assumed that the attachments initially fill the holes and
that each attachment-hole combination deforms elastically under load.

The presence >f "slop" (which results from a combination of manufacturing tolerances
and differential thermal expansions between the plate holes and attachments) and its influence

upon the load distribution, is then considered. A detailed derivation of all solutions is pre-
sented in Reference 5-1.
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b Longitudinal distance along splice, inches

Y ¥gp Distances from elastic axes of top and bottom plates, reSpectwely. to the
contact surface, inches

Distance in the thickness direction. inches

Cross section area, square inches

Effective axial stiffness of a plate; f EdA (see Paragraph 4.1.1.1), lbs.
Non-dimensional coefficients for the determination of attachment loads
(Figure 5.1.2-1).

Diameter, inches

Young's Modulus, psi

Effective bending stiffness of a cross section, (see Paragraph 4.1.1.1), Ibs-in
Cross sectional moment of inertia, in4

Stiffness, 1bs/in

Longitudinal spacing between adjacent attachments, inches

Externally applied bending moment, in-lbs

Total number of joint attachments

Attachment shear load, lbs

Temperature, degrees F

Mechanical load, lbs

Non-dimensional ratio of axial flexibility to attachment-hole flexibility

>:>|> -
=

A Byn

2

NXHTUZECRTEH B

Coefficient of thermal expansion, in/in-°F

Linear displacement, inches; an increment

Slop displacement between adjacent loaded attachments. inches
Axial strain of a plate due to thermal loading; f EaTdA/ f EdA

Free axial thermal expansion in the plane of the plate; f € dx, inches

MR

Subscripts

Refers to bottom plate

Refers to the ] th attachment, or bay

Refers to the _} attachment of a splice having N total attachments
T Refers to top plate

l-zﬁ'-i-w
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SECTION 5 -~ THERMO-ELASTIC ANALYSIS OF JOINTS

This section considers the thermo-elastic analysis of mechanical joints. The
analysis presented is directly applicable to problems where the stress levels lie in the
elastic range (low ductility materials such as the ceramies, refractory materials, beryl-
lium, etc., generally remain in the elastic range almost to failure). In addition, certain
aspects of the analysis are shown to be of value in the solution of problems with stress
levels in the inelastic and plasiic ranges.

As shown in Figure 5-1, a mechanical joint is one that is composed of plate-like
materials joined by fasteners (such as rivets, pins or bolts) for the purpose of load transfer.

e D =
— o
fha 110 LN
M K 1!
\ e e H (—"
I I \.|_7

FIGURE 5-1 MECHANICAL JOINT

It is assumed that the heat conduction problem has been solved for the temperature
distribution in the joint. To find the loads in the attachments and the stresses in the cross
sections for the known temperature distribution and a given applied mechanical load, two
classes of problems will be considered. The first is the one-dimensional case, wherein
each plate is restrained from deflecting out of its own plane. The second case to be con-
sidered is the two-dimensional problem wherein the plates bow or deflect out of plane.

General solutions are presented and it is shown how these degenerate to the more
familiar elementary joint equations when the applicable simplifying assumptions are made.

The following symbols are used throughout this section:

Difference between attachment and attachment hole diameter (slop), inches
Attachment-hole flexibility factor, in/lb

Plate thickness, inches

Running subscript

The jtb attachment, or bay

Rotation of a plate per unit distance due to thermal loading (thermal curvature,
see Paragraph 4.1.1.2)

g~
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THERMO-ELASTIC ANALYSIS OF JOINTS
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4.2.7.3 (Cont' d)

For symmetrical geometry and load, Egs.(lb) of Paragraph 4.2.7.2 are

utilized.
i —[z*@(z'@-z'@)-z'@)(z'-z'+z')]
T CENORN RO
Xy = - J{15,740 0y’ [—218.006 )7 - (-3¢.0755 3L )]}
_ 376.995 (10)"7 -11,118,000 (10) ' - (-427.56 S1) + 9.761 T
(12.5665) (10)"7 (15,740) (10)" - @76,995 (10)7")°
X, = - 13652inlb- 67.388 a)® 2L . 661 10)® ot
_-[2'@(2'-2'%2')-2'@(z'®-zf®)]
F SXCEIoREIOL:
Xp = 10333 1b +1.3424 10)® 2L - 022 10)® ar
Xp = 0
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4-2

4-3

4-4

4-5

Switzky, H., Thermal Stresses and Deformations in Unrestrained Beams,
Report No. E-SAM 24, Republic Aviation Corporation, December 1957.
Appendix, January 1960.

Klosner, J. M., Thermal Stresses at the End of a Spar, Report No
E-SAM-14, Republic Aviation Corporation, October 1955.

Engineering Structures Data Sheets Manual - IBM Procedures, ESM-IV,
Republic Aviation Corporation, January 1958.

Switzky, H., Solution of Statically Indeterminate Beam-like Structures,
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Meissner, C., Stress Analysis of Aerodynamic Surfaces Using the
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Switzky, H., Influence Coefficients, Report No. ESAM-22, Republic
Aviation Corporation, August 1956.
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4.2.7.3 (Cont'd)

2000 (Neg)

h (Constanmt)

+1000 1000 (Neg)

+10,000 413

\
a 15 |
b* _IB

aT (1-sin 6/2)
aT

Sign Convention for
Applied Loads

FIGURE 4.2.7.3-2 FRAME PROBLEM
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4.2.7.3 (Cont'd)

Any load distribution can be decomposed into symmetrical and antisymmetrical
components by dividing the load vector into two equal parts and applying one of the
halves to the structure with its symmetrical equivalent and applying the other half with its
| antisymmetrical equivalent as shown in Figure 4.2.7.3-1. Using the sign convention
for applied loads, a symmetrical load would be defined as

M, = - M,
Hy = - H;,
vV, = +V,

i

where i' is the station symmetrical to i and an antisymmetrical load would be defined
with opposite sign. '

" |p/2| | 1P/2]

= +

(a) Load {b) Symmetrical Load {c) Antisymmetrical Load

FIGURE 4.2.7.3-1 RESOLUTION OF FORCE INTO SYMMETRICAIL AND
ANTISYMMETRICAL COMPONENTS

The mechanical and thermal load, together with the geometry of the frame,
is shown in Figure 4. 2.7.3-2. The solution of the frame problem Is obtained by
employing Eqs. (1b) and (1c) of Paragraph 4. 2. 7. 2 with the values obtained in Table
4,2,7.3-1.

WADD TR 60-517 4,113



4.2.7.2 (Cont'd)
xy ds
El

fxzds T x2 ds
EI EI
- =f y ds fds
y EI EI

- _[xds ds
X =) 7EI / El

Case III: Relaxation of Boundary Conditions

2

tan 2 ¢

It 1s often convenient to determine the effect of changing the frame by inserting
hinges, etc. It is also convenient for computational techniques (digital, etc.) to maintain
a standard form to solve all frame problems. Employing the same virtual force system
permits to use of standard tabular forms or digital procedures without modification for
each special structural problem.

Equations (2a) of Paragraph 4.2.7 can be viewed as the relative deformations
at each side of the cut. If a hinge existed, then AM would not equal zero but the redundant
load XM would equal zero.

For the case with a hinge, the compatibility equations become

[y ' Yids xyds
B 95 - fw yds +fe'coseds + Xl % e - {4a)
2
Mxds _ _ = ds X ds _
f = fw' x ds fe sin © ds + X —’—‘-Y—EI *Xp [FFo= 0 4b)

Solution of these equations results in the redundant loads X_, and X_. Note that
the tabular form shown in Table 4.2.7.3-1 can be employed to obtain ﬂE desirgi quantities.

4.2.7.3 Sample Problem - Frame Subjected to Thermal and Mechanical Loads

Table 4.2.7.3-1 is designed to solve a general frame problem with a maximum
of three redundants. The problem selected was a special one wherein the structure and iloads
were symmetrical. It was chosen in order to indicate the simplification of work and calcula-
tions which result when symmetry of loads and structure exists. Only half the rows in the
table need be calculated and many-of the columns can be eliminated as indicated below.

(1) Column 8 (denoted by ) need not be computed if the structure is symmet-
rical since Z (8) would equal zero.

(2) Columns 15, 19, 22, 24 and 27 {denoted by ) need not be computed if the
loads are symmetrical since £ of these columng would equal zero

(3) Columns 13, 14, 17, 18, 23 and 26 (denoted by ) need not be computed
if the loads are assymmetrical since the 3 would be zero.

The summation (value of integral) of the column is therefore either twice the
first half (X = 22') or zero since the value of the symmetrically located station in the
second half is either the same or opposite to that of the first half. The first half of columns
21 and 22 is usually computed for the purpose of employing Egs. (2) of Paragraph 4.2.7.1 in
obtaining the total loads acting on a cross section.
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4.2.7.2 (Cont'd)

-(IM’;;IdS - fw' x! ds-f?'sin e' ds)
X' _ = {2) cont'd

P fﬁ ']2ds
El

where all the above terms are described in Figure 4.2.7.2-1.

o It is seldom advantageous to employ the elastic center method unless the location
(x, ¥) and direction (¢) is readily discernible. I the case of symmetry about the "Y" axis
the value of @ =0 and x = 0 so that y' =y - y and x' = x. I symmetry exists about both axes
it would be advantageous to establish the origin at the center of symmetry.

-

o,

Rigid Bar To ,
Elastic Center X'M ! y
/ y
/
A
e p. 4
x —»
FIGURE 4.2.7.2-1 ELASTIC CENTER METHOD
The transformation equations are:
y' = §-y)cos ¢ - (x-X) sin ¢
x' = (7-y)sin ¢ + (x-X)cos ¢ @
Q' =6 -¢
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4,2.7.2 (Cont'd)

If the applied loads (thermal and mechanical) are also symmetrical, e.g., M (yn, xn) =
M (yn, -xn), then the radial deflection of the cantilever (in P direction) due to applied loads

is zero and the other deflections need only be evaluated for half the frame and then doubled.
If the applied loads are antisymmetrical, e.g., M (¥ " xn) = -M (Vn, -xn), then the hori-

zontal deflection and rotation of the cantilever is zero and the radial deflection is evaluated
for half the frame and then doubled. The following equations summarize the solution of
symmetrical frames since any loading can be separated into symmetrical (8) or antisym-
metrical (A) components.

For symmetric loads:

XPS=O_ {1b)
i s
8(m) 8(m 8(m) 8(m)
- fﬂ 2ECIis - fo _XE% <(j; h%if - fo rw’ds)
s(x) 8(7) s{m) 8(m) s(m)
SNV AR T YA R A e

= s(m s (1) 8(m) 2
Xrs (f ds” xzds>_( yds
, EI\, EI . EI (b)

For antisymmetric loads:

Kyp =03 Xpp =0 (1)
s(m) 8(m 8(7)
-D‘ M"Tfﬁ--f w' (x)ds -f E‘sineds]
[+] (1] [¢]
XPA = 500 N | {1e)
f x ds
. EI

Case II: Elastic Center Method

By transforming the reference axes to the "Principal Elastic Axes', it
is possible to diagonalize the flexibility matrix. This reduces the three simultaneous equations
to three single equations which can be solved quite readily. The solutions can then be expres-

sed a8
_(fl\%:dls —fw'ds)
ds

X'M—
B
X = '(IM%:LId_s ‘fw'yds +fE-cos o' ds) -
' f_(y_fE_fds_ @
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4.2.7.1 (Cont'd)

The total loads acting on any section are

n =Mn"'XM"'ynXF'i'anP

S

n (H11 + XF) {cos B) + (Vn +XP) {-sin B) @)

= (H, +Xp) (+8in ©) + (V +Xp) (+cos ©)

3

4.2,7.2 Special Cases

The solution of the curved beam problem can be modified in special caées to
reduce the amount of computations. The following cases are considered:

Case ] - Symmetrical Structure
Case II - Elastic Center Method
Case III - Relaxation of Boundary Conditions

Case I: Symmetrical Structure

In many structural problems the geometry s, AE, EI on one side of an
axis is a mirror image of the geometry on the other side, e.g., EI {7, + xn) = EI{y., -
xn). This is usually the case in aircraft structures (except for some glight Variation due to
témperature effects) because of the probability of the load being applied from either side of
the frame. When the structure is symmetrical, some of the influence coefficients

xds _ _ . Xyds _ - = ;
(f KL - fMP = fPM = Bl =~ fFP = fPF =0 ) are identially zero and the others
need only be evaluated for half the frame and then doubled, e.g.,
8{2m)

8(m)
2 2
!ds_ ds
f BT~ 2 { o

o

where s(m) = length of frame between © = 0 and 7)

The solution is simplified as follows:
2
- Mxds _ - x"ds
XP— ( ET fw'xds fesmeds)/f Bl
2
fy ds _ [yds Mds —fw'ds)
E1 El EI (1a)
(xM> ye L[ | \([Me furyas + [ercos 0as)

([ ([2) ( fuieY’
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4.2.7.1 Values of €', w' and M

The values of €'and w' can be obtained by an analysis of the cross sections as
shown in Sub-section 4.1.

A simple approximation of the aT distribution in a cross section is to assume
a linear variation through the depth. In the case of a linear distribution, the values of €'
would be aT at the centroid of the cross section and the value of w' would be the difference
(@T) - (@T) ., .
of the (aT)'s divided by the depth (W' inside ___outslde,)
tion of aT usually results in a good approximation of the distortions of a cross section ( €'
and w') due to temperature. These are the parameters that determine the redundant loads.

The linear varia-

The moments on the cantilever (cut frame) beam can be determined by statics of
the applied loads,
M, = 2 [Hi O,y * Vp &R+ AM ] ,
i=1

or can be obtained in a table based on 'mcrementgl moments, as follows:

Mn+1 = Mn + AMMn + AMVn + AMHn (1)
where

Vg = Vp AV, 5 AMy = Vo6, - x )

Hy =H* AH 5 AMy, = Hy Opa~ Yy

AM,, = Moment sbout (xn W yn+1) of all loads hetween (x]1 s yn) and &

Yn+1)

avy = Vertical load (positive up) between (xn » ¥p) and (x 41 * Y +1)

AHn = Horizontal load (positive to left) bet ween (xn, yn) and (xIl a1 Yn +1)

(xn.yn) = Coordinates of centroid of nth element

Asn = Length of the nﬂ!L element.

Notes: (a) Frame length between (xn ’ yn) and (xn a +1) is equal to .5 (Asn + Asn +1}.

() The loads on the frame must be self-equilibrating. This should be checked
before the deformations due to the applied loads are calculated. (See last
row of columns 32, 34, and 42 of Table 4.2.7.3-1).

It is advantageous for the purpose of analysis to:

(1) Keep the lengths of As small so that section properties are fairly constant in
each AS ‘

(2) Start new segments when sections change radically

(3) Locate a station (centroid of segment of length As) where load changes slightly

(4) Make As zero where maximum stresses are expected (concentrated loads, etc.)
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4.2.7 (Cont'd)

or
ds yds_ fxds
f—-—ds—fw'ds+xM <7 * Xp EI + X

xp [T <0 e

IEI ds w' yds + ecoseds+XM Ei +XF

des f-,. xds xyds fxds_
fwxds- esmedx+XM EI +XF EI + X =0

where fM = 0 and f € cos © ds and | € sin 6 dx are usually small and assumed equal to

Zero.

The redundants XM’ XF' XP are obtained by solving the simultaneous Egs. (2b).

X——

~— O

ooy k/& _ l
(,___] - |
=

mle Mg =Y mp =X
fM=0 fF=cose fP=—sme
pM=0 pF=+sm6 pP=+cose

FIGURE 4.2.7-2 DETERMINATION OF VIRTUAL FORCES m,f,p
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4.2.7 (Cont'd)

u
er Fiber
\
v
. Al
Jl( Outer Fiber
- X Section A-A

Tension is positive (increasing axial strain )
- Compression on inner (upper) fiber is positive (Increasing curvature w)
Inward shear is positive
= Angle from negative Y axis to normal through sectior measured counter~
clockwuse
Applied clockwise moments are positive
Applied horizontal loads are positive to the left
Applied vertical loads are positive in the up direction.

Lo

-1 ;o
. ow

FIGURE 4.2.7-1 SIGN CONVENTION
The flexibility coefficients, neglecting axial and shear energy, are evaluated from

the virtual moments shown in Figure 4.2.7-2. The results in matrix form are shown as
follows:

- m m m. m [ N
£t ot meMdsf hg;Fds f———-—“’élp as| | [d= @f-———"ds

mm mr  Imp ®l J El JEI
m m m 2
- _| [xas j y-ds [yxds
fem frr frp f f T ds f El & JoEr |
¢ s P f i f umP f xds {'xyds x2ds
El JEI £l

PM "PF PPJ

. — -

The following compatibility equations express the requirement that the relative
motions at the cuts are zero., The virtual force system is the unit load at the counterclock-
wise side of the cut with reactions on the other side of the cut.

Am =f[(“w W) my +(E +E')'_"M] d& + fy*m * IMFEF T ivpRp = 0
Ap =f[(‘“' w') my + (& +é_)fF] ds + IgyXy * fppXp tippXp = 0 @a)
Ap =f [('w ) mp + (% +E)fp] ds + fppXy * IppXp *ipp¥p =
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4,.2.6.3 (Cont'd)

- - - Exy Ty 1 +ae _ 1-a 3¢)
2 1+e E A, (1+e) 2
11 .1 E Ak ( e )
KF = 1+e +1
M
I Kp = Ky = 0 (unrestrained), then o = 0y = 0. (3d)
Jid KF = KM = m (completely restirained), then
-E.a, T
o111 = -
9 = T1ze  @te) = - BTy 3e)
-E,a. T
_ 27171 _
%% = —{ie p(l+e) = ~ E2a2T2 . 35

4,2,7 Curved Beams

If the beam is straight, the axial problem can be separated from the bending problem.
This cannot be done in a curved beam, and the problem must be solved with all the degrees of
freedom at a point coupled. Most curved beams in aircraft structures are frames of relatively
few load redundants, and the flexibility method is utilized since the frame is essentially a re-
strained cantilever beam. The utilization of equivalent loads requires determination of fixed
end reactions which are quite complex (except for special geometries and loads) and which
do not reduce the computation work except in problems involving many redundants. '

The flexibility of the frame which results from mechanical loads is primarily de-
termined by the bending flexibility. This is because of the bending energy of the frame, due
to mechanical loads, is usually much greater than the axial aid shear energies. This can be

[t [55 0w [ . e
seen by comparing the values of —ﬁ——ds, Yy ds, and A ds. The axial

energy due to temperature q’é_ “ds), however, may be a significant p‘cr)rtion of the thermal bend:
ing energy { f ~-w' %:.ds) and should be included in the calculations. The change in axial and
bending stiffnesses due to temperature can be quite significant and can be calculated with the
aid of equations in Paragraph 4.1.1.1.

The frame problem is solved by the flexibility procedure. The structure is made
statically determinate by cutting the frame, fixing one end, and applying redundant loads
(XM, XF and XP - Figure 4.2.7-1) at the cut to enforce compatibility. The deflection at the

cut is computed by virtual work in terms of the mechanical and thermal deformations times
the virtual forces and by the redundant loads times the flexibility coefficients,

Let fFP (ete} = Element of flexibility matrix; deflection at cut in ¥ (axial) direc-
tion due to a unit load in P (radial) direction

XM (etc) = Redundant load at cut in M (rotational) direction

mp (etc) = Internal virtual force of m (rotational) type due to a unit load at
cut in F (axial) direction

AP (ete) = Deflection at cut in P (transverse) direction due to applied loads,

temperature, and redundants.
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4.2.6.3 (Cont'd)

General Solution

f

dc Pca +

el
fac Pe =~ Keq Po

- -1y-1
Fo = - (fdc +ch) fac Pea

Let KF

... F = hd

= Axial stiffness of support and Ky = Rotational stiffness of support.

1 -F,) .
(E}_A1 {1+ e) ) ( (1 +e))

P e ElAlalT {1 +ae)
~ o EA 0 +e
—x, *1
F
1 1 -1 ("Mo)
M= - r—
ElA h“f e M E.A. h e
1+e 1+ e)
E A T h g +ae
M=+
E A h (1 +e) +1
K
M
F M -
o.j = Ej I— Wj'y)
AE El
1+ae)
F 1T1( .
p— E A {+e) = Axial Shortening Causedby Flexible Re-
AE +1 straint (Kp)
K
F
(452)
E_ 1 12 h P = Curvature Caused by Flexible
EI E,A b ( il , Restraint (K )
Knm
0. = ElalTl 1 +ae + {L-a)e
1 1+e AL @ +e)
1K o1 EA b (1 +e) s
F K
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(1b)

(2b)

(3b)



4.2.6.3 Problem II - Sandwich Beam by the Flexibility Method

The sandwich beam of this problem is subjected to temperatures of T1 and T2

above the datum on the top and bottom faces, respectively. A general solution is presented
for the stresses and redundant forces in the sandwich beam in terms of geometry and end
fixity. The problem is solved by utilizing the geometric relations for a sandwich beam
established in Paragraph 4.1.2.2, solving for the unrestrained deformations, determining
the fixed end reactions, and solving for the reactions and stresses.

Geometry (see Figure 4.1,2,2-1)

- B4y b B
¥ h=——— = (See Eq. (1) of Paragraph
T EA YERA, L+ Doy l+e  "4.1.2.2)
141
Unrestrained Deformations
a T -a T a,T a T o, T
woe bl oL (1 B2 )5 (a) (See Ea. @) of
171 Paragraph 4.1.2.2)
E.A o, T, +E, A a,T
- 171 1 2727272 1 +ae
€1 = = o T (—-—-—-) (See Eq. (2) of Paragraph
E11"1 + Eyhy 171N 1+e /4 1.2.9)
o =0, = 0 (See Eq. (4) of Paragraph
4.1.2.2)
where
_ ExAy a,Ty
e = % a and a = =5 .
11 171

Fixed End Reactions

P =0 M, = EI w' F_=- EA€ (See Eqs. (1) through (3), Paragraph4.2.2.3;

o o
I30,0 =0 mo,o=1 fo,o= 1)

where

EA = ElAl + E2A2 = ElAl (l+e)

_ 2
EI = EA h - (E,A; + E,A))
2 1l+e e
- ma n?(1-2e ) o pa P (o)
171 (1+e)2 1 +e
T
_ 2 e %11 -a
M, = EjA b (1+e) h (-2) = EAje T h 3572
FO = E].A o Tl {1 + ae)
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4.2.6.2 (Cont'd)
Stiffness Matrix - The stiffness matrix is determined as shown in

Figure 2,1,4.3~1.

Unit Displacement at

WADD TR 60-517

4,102

3 6 2 5 1 4
3 ’_ .012 -.06 -.012 -.06 0 4]
6 -.06 .4 +,06 2 0 0
2 -.012 .06 +.024 0 -.012 | -.06
= (.012 +.012)| = (-.60 +.06)
0 .8
5 -. 06 2 |=(06 -.06)| = (4+.4) |+06 .2
1 0 0 -.012 .06 +,012 .06
4 L 0 0 -.06 .2 +,06 4
Equilibrium Equations and Displacements
11‘5a+K55A5 +A56A6=0=P5a+'8 E1455+.:3EIA6
P6a + K65A5 + KSGAB =0 = PGa + .2 EIA5 + .4 EIA6
EIA; = 1.43 Py, = 72 Pg, (Check flexibility equations of
- Problem 1A)
EIA6 = -,72 P5a + 2.85 Pﬁa
Reactions
_ - _ — = )
1 Kis Ky ‘:As] .06 0 [1.43 .72 ] sa
13’2 _ K25 K26 A6 _ 0 .06]1~.72 2,85 P6a
| Fa | K45 %56 _ -2 0
P1 .086 -.043 PSa (Checks Flexibility Equations of
Problem 1A)
P2 _ .043 172 Pﬁa
P3 -.043 -.1_29
P4 +,286 -.144
| | L J




4.2.6.1 (Cont'd)

Since the beam is straight, it is easier to determine P8 by direct solu—
tion of the compatibility equation,

L 6 l[1° 5 10
./; g dx 10 U; @x +10x)dx+'£ 300 dx']
Paa = oL, = 20
J; aE & @) 107
1 0° 10)2
= = [2 9—3)- + 10-(-51- + 300 (10)] = 2083 b
P
P, = SXE = 208 __ - 139
Lrxr 14169
10% 20y

B8 777777777 7777777777 7777777 77 ~=-

76.31 I80.31 64.37

209,31

FIGURE 4.2.6.1-3 SOLUTION

4.2.6.2 Problem IB - Statically Indeterminate Beam by the Stiffness Method

The bending portion of the above problem is solved in the following steps:
(1) The degrees of freedom are classified.

(2) The stiffness matrix is determined by methods described in Section 2
of this Manusl.

(3) The displacements are determined from the equilibrium equations
at each degree of freedom. This requires inverting the stiffness
matrix.

(4) The redundant loads are expressed in terms of the displacements to
obtain a solution in terms of the applied loads.

(5) Repeat steps (6) and (7) of Problem IA.

Clasgification of Degrees of Freedom

{r.,s) = (1, 2, 3, 4
(a,b) = (5, 6)
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4.2.6.1 (Cont'd)

1
-~}
Il
w
i}
1
Wy
2]
“+
[
[
H
+
ooy
[--]

=
N
]
——
[
(—]
S
-3
'
(=1
[+7]
S
=
=
-~
|
o
—_—
(=}
1
s
s
(=]
[—]
S
li
1
[<;]
(<]
[

! 10)"(.08)(10)"5 200 -

1 +160=R5

' R

Rgy =-53.3 +10 (16) =106.7 | 160 +10 (0) = 160 = R,
1777777777777 '\ I II7I777
16 16T +160 1160

- /'R N
-53.3 +106. 71

The total eqguivalent loads are obtained with the aid of Eqs. (1) and 3) of

‘Paragraph 4.2.2.1

Ry = Bpp * Rig

Ry, =50 +16 = 66 = -P_

R, =50 +60 - 16 = 84 = -P,

Ry = 60 = B

My = My - Mg

R, = [o- (-125)] + [o-(-ss.s)] = 178.2 = -B,,
R = [-125 -(—100)] + [+1oe.7 - 160] =-78.3 = -B,_
R, = (100-0) + (160-0) = 60 = -Bg

(7) The Reaction Loads are Obtained From the Unit Solutions.

= -94  + .043 (+78.3) - .172 (-60) = -80.311b
= -60  + .043 (+78.3) + .129 (-60) = -64.37 Ib
-66 - .086 (+78.3) + .043 (-60) = -75.311b
= -178.2 - .29 (+78.3) + .14 (-60) = -209.31 in-Ib

L
“:U v U v
I
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4.2.6.1 (Cont'd)

Thermal Distortion of Cross Section:

1
]
aT - aT 1 aT +a
wi o= ZTOP_“BOT  inggr prgtrt- 1 % = ToP TeoT

bution Through !

Depth) ! {c.g. at § of Cross
I Section)
I

The «T values are given at discrete points of the structure and are assumed
to vary continuously. Since there are values at three station (end stations

and mid-station), the best parabolic curve passing through these three values
is selected. This results in

0<x<10 105w = 4x? - 20x

10<x <20 10%w' = 200

6 &1 = 2x2 +10x

ol

=]
L
]

107 €' = 300

[=2]

Fixed End Reactions:

Mechanical Loads (see illustrative problems given in Paragraph 4.2, 2.5)

I -121b./in. 105x<20

ARAEREEEREEE R

+60=R, +60=R,
|
|
-125=R gl 1002 -100=
4 Ry, =-125 : 100=R, 100=R,
P=-100,v = .5 | =-12, v=1.0

Thermal Loads (see Egs. (7) of Paragraph 4.2.2.5)

16% w' = 200 (i)o
L

6 X 2 |
10° W' =400 (L—)
400 | 200
_ I -
| =Wio | (777777777777~ V1o
R R I R R
\ 1 2L /R 2R 3
Ry 5L | \ ./Rﬁ
200 | Rsp
6, _ X =
10" w' = - 200 W11
EI w'
_ _ 00 Lj _ 12
By = By = Wi Wy b (s j+2)]
7 -6 ! 7 -6
_ _ 107 (.08)(10) -~ 1 (10) (.08)(10) -
Ry = Ry 75 (-200 +400) ! 45 =0
l — = e
: Rop = ~By
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4.2.6.1 (Cont'd)

4) Inverse (Stiffness)

1 f—l

1 1 _( .01373  -,00429 _ o5
=\ -.00429  +.00171 AE 88 " °

ElI yx

- e mm mm o= s

From Eq. {4a) of Paragraph 4.2.2.4, the cut redumdant loads can be solved
in terms of the applied loads.

_1 —_ — PB
“Pe =ty Ly By " K, Fsalfes * Psfas
(P2)=(0 1 0 0 .043 —.172) P, . Py, foe
P, 0 0 1 0 .043 .129/ [P, 8 T Ty +1/Kg
P3a b = Pga
p 8 1+AE7E;L
4a
AEfL-,
PSa - p = L Jo €'dx
8 = 1 TAE/KL
P /&g
6a

(6) Unit Solutions

-P, =P, + .043Pa -.17 Pa

2 2a 5 6
—P3 = P3a + .043 P5a. +.,129 PGa
-P1 = Pla - ,086 P5a +.043 Pﬁa
—P4 = P4a - .29 P5a +,14 Pﬁa
Ab= fbapa + £bxp:x

F

1.40Pa- .75Pa

e mm e mm me we  mm mm o M R e e e e ke mm mm e M mm o e e mm e o e e e

5 6 p
_ _ "By
EIA, = -.76 B, + 2.80 By % = &
(6) Applied Loads
aT=400(10)'6\ Ky = 10° b/,
f—5—4 o \‘L S E = 10 Ib/m.2
y - 12 Ib/in = )
. M 12 b/ A = isim.
g I = .08 in.
aT=0-5 e d = 1lin.
aT=100(10y"® ” e - aT Linear Through
QT=200(10) % T=200 (10) Depth c.g. at §, of
p———————— 10" 1" ———l Cross Section
1 2

FIGURE 4.2.6.1-2 TEMPERATURE AND LOAD ON BEAM
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FIGURE 4.2.6.1-1 BEAM WITH DEGREES OF FREEDOM

(1) Classification of Degrees of Freedom

(Uncoupled Since Beam I

Subscripts Bending Is Straight) y Axial
{r,s) 1{ZV=0) 4(ZM=0) :7(zn=0)
&, y) 2, 3 _—
(a:b) 5, 6 —
(c,d) _— 8

(2) Equilibrium Equations (Ref. Eq. (1b) of Paragraph 4.2.4)
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(3) Flexibility Matrices (Constant EI and EA) - iy
I
2 3 !
1
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3 | 833 2667 ,

2 3 5 6
EI fya 2 !: 333 833 b0 50}

3 833 2667 150 200
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structures larger than the elemental beam), past experience (ease of visualizing pro-
blem), etc. Generally, if the structure is primarily a set of elemental beams (e.g.,
cantilevers) in series, 1.e., the number of d +y degrees of freedom is less than the
number of b degrees of freedom (@ +y <b), then the flexibility method ie better*. If
however, the structure is primarily a set of elemental beams in parallel (ents, etc.)
in which d +y > b, then the stiffness (slope deflection) method is better. When the
number of redundant degrees of freedom is relatively small it is usually simpler to
visualize the flexibility method. As the number of redundant degrees of freedom in-
creases, however, the gelection of the simplest datum becomes more and more complex
and the stiffness method which does not require selecting a datum (the datum of the
actual structure 18 employed) becomes less involved. Because of the lack of engineering
intuition required in the stiffness method it is more easily adaptable to computing
machine techniques. The flexibility method becomes more and more involved as the
generalized coordinates {c,d) increase in number, especially when loads can be applied
on these elastic supports.

The flexibility and stiffness methods of solving heam-like structures are
illustrated below. The problems are treated in great detail to familiarize the analyst
with the methods of analysis. The following problems are considered:

PROBLEM IA -  Statically indeterminate beam by the flexibility method
PROBLEM IB -  Statically indeterminate beam by the stiffness methed
PROBLEM II -  Sandwich beam by the flexibility method.

4.2.6.1 Problem IA - Statically Indeterminate Beam by the Flexibility Method

The beam shown in Figure 4.2.6.1-1 is loaded with mechanical loads and
temperatures as described in Figure 4.2.6.1-2, It is required to determine the re-
dundant loads on the structure. The problem is solved in the following steps:

(1) Determine and classify the degrees of freedom of the beam from the
geometry (Figure 4.2.6.1-1).

(2) Establish the static equilibrium equations.

(3) Establish the flexibility matrix by methods described in Section 2 of this
Manual.

(4) Ivert the flexibility. matrix associated with the cut redundant loads and
express the cut redundants in terms of the applied loads.

(5) Obtain unit solutions of the redundant loads in terms of the applied loads
by combining (2) and ¢}.

(6) Apply the mechanical loads and temperature and determine the fixed end
reaction by employing Paragraph 4.2.2,

(7) Substitute the negative of the fixed end reactions into the relationship
established in step (5) to obtain the solution shown in Figure 4.2.6.1-3.

* The number of 8 degrees of freedom is not too significant since the geometry matrix
(gij) need not be inverted.
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Keb Ab +Kef Af +Kes As - I"e =0 {2)
KrbAb+KrfAf+KrsAs_Pr=o )

The boundary conditions are:

P, =0 @)
A =0 6)

B
whose solution is

4 )
a, = +K7l P, (62)
. 1 —-1
Af Kef Keb Kab Pa (6b)
-7 w1 '
P, = Kup Kap Py (a)
_ —=1!
P+ P _= K. !npf p = total reaction (Including (7b)
r ra th “ab | - -2 loads directly applied to
Pra reactions)
where
-1
=-1 -1 .
K ab = K ab = K af Kef Keb) = ﬂe:_dbihty of actual structure
= my of flexibility method, (8a)
— -1

= reactions due to a unit de- (8b)

K, =K, -K.,K_.K.)
rb rb  rf Tef Teb deformation at b

Pa = equivalent loads acting at points other than the supports
Pra = equivalent loads acting at the supports
b - load in jt'h member at "a' due to unit displacement at "h"
The end loads on each elemental beam are
pl - X P, (9)
-, Ko,

which are combined with the loads and temperatures applied to the beam to
obiain the stresses and strains,

4.2.6 Selection of Method of Analysis

The best method to employ cannot be decided arbitrarily but must be evaluated
after due consideration is given to the structural problem as regards the computing tools
and time available, supplementary structural information (e.g., available solution of sub-
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@)

@)

6)

©)

@)

in the immediate vicinity of j since there is relative motion of the jack only
at j. It should also be noted that all elemental beams meeting at a common
degree of freedom are springs in parallel since they all have the same

motion and the Kij = X k‘,i'j where kjij ig a force at i due to a unit deforma-

tion at j of elemental beam bounded at j. The values of the elemental l:j 's
are given in Paragraph 2.1.4. ij

The mechanical and thermal stimuli are now applied to the restrained
structure and the equivalent fixed end loads are resisted by the imaginary
jacks.

Since the displacements at the degrees of freedom resisted by the imaginary
jacks, it is assured that compatibility at each point of interest 18 satisfied.
Equilibrium at each joint is maintained by loads in the imaginary jacks which
exactly balance the equivalent applied loads resulting from loads acting on the
elemental beams between the joints. '

The degrees of freedom can be characterized by the following subscripts:

(a,b) = subscripts for cases in which the deformation is unknown (Ab)
but the applied loads are known (Pa).

(e,f) = subscripts for cases in which the deformation (Af is unknown

but the applied load is zero (P, = 0). This coordinate does not require
an imaginary jack except for tﬁe determination of Kej'

(r,8) = subscripts for cases in which the deformation is known to be
Zero (As = 0, an actual support) but the redundant load (Pr) is wnknown.

Thie coordinate does not require an imaginary jack since the structure
supplies an actual jack (restraint).

Note that elastic supports (c,d) need not be specified by generalized co-
ordinates but are separated into two components, The elastic member
is incorporated into the overall structure and coordinates (¢, d) which
described where the elastic member supported the sub-structure be-
comes (a,b); the other end of the elastic member which represented the
actual datum becomes (r,s). The (x,y) coordinates are in the general

{r, 8) group.

Remove all imaginary jacks. The structure will now deform. The load in
the imaginary jack produces deformations. The final deformation will be
one in which the equivalent applied forces are exactly balanced by the forces
produced by the relative deformation of the elemental beams whose common
ends all deform the same amount (KA = P). The jacks could have been re-
leaged one at a time and then reapplied; such a procedure would be a trail
and error method (e.g., Hardy-Cross Moment Distribution Method).

The requirement of equilibrium at each degree of freedom results in the
simultaneous equations

kabAb+KaIAf+Ka3As-Pa=o (1)
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2 3
kb ™ ¥ab

1
} K =k *
2 3
Imaginary Jacks r(ab ah

e
(Note: & +-1, )

A
7777777777777 T“rb Tkrb f“rb
fl{rb“ (k:b+ ki+ kr:b

a) Imaginary Structure

b) Determination of Kij

P, (Applied Load)

} e
Pa (Fixed end react]m&(g:'u )imaglnary i j/ j f A =K a% P,
te

c) Applied Stimulation To Imaginary Structure  d) Structure With Imaginary J acks Removed

fpl TP 2?1)3 where p =kabj by = kalj) Ka? P

a

pl i i -1
‘—T-Ab r =k, b 2 = krb Kab P,
1.1 1,1
Py Tk Ay T Tk 4
2 1.2 2 _,2
Pa kab Ab’ Pr "krb Ab
3 3
r

o fo? ol Py ~iap By P

e) Loads In Individual Members

FIGURE 4.2.5-1 STIFFNESS METHOD
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4.2.5

Ay = AS =90
where
- _ -1 _ -1
Hca {fdc +ch [fdx (fyx) £
- - -1(= _
Lea = (fyx) ( fya. +fyc Hca) B
Qa = (gra: grcfgrx) P
H
- e
xa
= /5 | ! =
Mha = (fbaltbc:fbx) N
- La
Lxa

Equation (10) represents the flexibility of the statically indeterminate
structure whereas fij represente the flexibility of the cut structure.

The problem is simplified to a great extent if no flexible supports (c,d

degrees of freedom) exist. In that case,
P =-f1T T
x ¥yX ya "a
— | —
Pr_(gra:grx) 1 {Pa}
1y
yx ya
—_ I —
Ab—(iba:fbx) L {Pa}
-1
_fyx fya

A = A =0,
y 8

ye ]} N [fda " fax (f;lli) fya}

influence coefficients of the
uncut structure (similiar to
influence line)

influence coefficients of the
uncut structure

flexibility of the uncut
structure.

(6¢c)

™

8)

®

(10)

(11a)

(11b)

{12a)

{12b)

Mechanics of Solution by the Stiffness (Slope - Deflection) Method {Figure 4.2.5-1)

(1) Place imaginary jacks (restraints) at each degree of freedom which fixes all
degrees of freedom in space and will not allow them to move no matter what

{2} The stiffness matrix

WADD TR 60-517

loads are applied.

move a unit deformatﬁll while all the others remain fixed in space.

loads imposed on the imaginary jacks are noted as K;; {load at i due fo a
unit movement at j). Note that element Kjj = 0 for aﬁj

4.92

is obtained by forcing one of the imaginary jacks to

points i which are not
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g -1
0= fda Pa * (fdc * ch) Pc +fdx Px (4c)

= geometry of structure employed In equilibrium equations (either 1
or moment arm ratios lij)
fi j = flexibility matrix of statically determinate sub-structure = deflection
at i due to unit load at j,(First subscript denotes the row and second
denotes the column of matrix. Second subscript of pre-multiplier
must be same as first subscript of post-multiplier.)

Kc d = flexibility of elastic supports of "c-d" coordinates = deflection of d
due to a unit load at ¢ (note inversion reverses subscripts)
fja = grouping of flexibility sub-matrices = (fja fj e fjx)
_ r ™
Pa = grouping of load vectors = Pa

which represents the _
equivalent applied loads. < P >
ca

P
L X2
Aj = deflection at "j"
Pa = load at "a" (due to applied loads = negative of fixed end reactions)
. = equivalent load at coordinate "i" due to applied loads (neg. of fixed end
1a reactions)
P, P = redundant {cut) loads.
‘The solution of the simu%taneous equation results in unit type solutions
in terms of (gij' f-ij' K cd) and the applied loads ('P'a) = _IT.‘;".. (Reference 4-5).
P
-
xa

The loads and displacements at each point of interest are as follows:

Pc = Yea Pa ba)
P, =L, P (5b)
-Pr = QTa Pa ©e)
b = Dpa Py (6a)

= - -1 = - -1
d cd Hca Pa ch 1:,c (6b)
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3
7
ZED 8(b) 9 b) 100) 11b) 14G)
; 7(s) 2b) 3 ) 4dy 5b) 120
24 1(s) 6(y)
-~
© e, A
(a) Structure Under Load
ﬂPﬁa
— - ~
Prra (Pas (P ( P 10 (Pall P12
Ipﬂa I P, ] P, IP 1 P (Ipxﬁa
P — li 1 — =P
rl x14a
P P P —_——
P (J ri T x3 T cd P 14

() Load on Substructures

- Positive Senge Shown

S ‘\HTHTW wﬂ“ﬁ‘n

R R
_ _ x3L ¥ ¥ x3R -
T Py3a =~ Bygp " Rygp) Pag =~ Bagr ~ Ryer)
RaoL R.or N
(c) Addition of Equivalent Load
FIGURE 4.2.4-1 FLEXIBILITY METHOD
TABLE 4,2.4-1 DEGREES OF FREEDOM
Type Total External Load On the -Beam Deformation Degrees of Freedom
@.b) known | unknown 2,5,8,9,10,11,12
(c,d) unknown unknown 4
x,¥) unknown (compatibility) known 3,6,14
{r,s) unknown (equilibrium}) known 1,7,13
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@)

©)

The equivalent loads (loads in imaginary jacks) due to mechanical and
thermal stimuli are applied at all the degrees of freedom. Each point in

a planar structure may have three degrees of freedom and each degree

of freedom can be a different type (see (2) above).

Equal and opposite unknown internal loads (Px Mk Px— and Pc 2= Pc_)
and applied at each side of the cuts. Px and P, act on sub-structure and
Px_ and Pc— act on supporting structure (Figure 4.2.4-1). These unknown

(redundant) loads are exactly those required to maintain equilibrium and
compatibility at each cut. '

(6) In essence there are n unknown quantities to find in order to be able to com-

pletely solve the problem. They are the b deformations (A, ), the x loads
(PX), the r loads (Pr)’ and the ¢ loads (Pc). Thusn=b +xX +r+c.

There are r equations of equilibrium, b equations of deformation and x + ¢
equations of compatibility. These are sufficient, in total, to solve for the
n unknowns., The following equations are in matrix notation:

"p! Equations of Equilibrium (EM =0, EV=0, ZF =0, "r" £ 3) for each
sub-struecture)

“PL = 8pg Py TBpe By TP} T8y (Py + Py

Tr
-PI‘ = (gra Pa * grc Pca * gI'X an) * grc Pc +grx Px (13)
-P_ =g P +g_ P +g P (1b)

ra a re o rx X

"h" Equations of Deformation

Ab = fba Pa +fbc (Pc + Pca) +fbx (Px + an)
Ap = s Py e Poa *Tox Pxa) *he Fe " hx Px (2a)
A‘o = J‘:bsa. Pa +fbc pc +£bx Px (2b)

"1 Fquations of Compatibility of Cut Supports

(“a)

0 = Ay = fya Pa +fyc (P, +P,) +fyx (Px +P) (3a)
0 = ?yai’a +f o Po T g Py | (3b)
"c".Equations of Compatibility of Cut Flexible Supports
Ad = (Kgcli) Pc- - (_xli) (_PcH) - fda Pa +fdc (Pc * Pca)
* fdx (Px * an)
'K;cll Pe = —fda T;a 130 Po *lax Py (4b)

WADD TR 60-517 4.89



4.2.4 Mechanics of Solution by the Flexibility Method (Figure 4.2.4-1)

(1) Make sufficient cuts to the indeterminate structure to make it statically
determinate. That is, the internal forces acting at any cross section due
to an arbitrary mechanical load can be computed from the equations of
equilibrium alone.

(2) Every degree of freedom can be characterized by the following subscripts
(Figure 4.2.4-1 and Table 4.2.4-1):

(2, b) = subscripts for cases in which the applied (P_ = - R_) is known
but the deformation Ab is umknown, a a

{x,y) = subscripts for cases in which the applied load is the unknown
cuti (redundant = Px) load but the deformation (A_ = 0) is known and
equal fo zero. y

{r,s) = subscripts for cases in which the load is unknown (P_= ?) but
the deformation (A_ = 0) is known and equal to zero. The s sdbscripts
refer to degrees of freedom which establish the datum of the cut (sta-
tically determinate) structure, The datum defines the position in space
from which the displacements are measured. The number of subscripts
of the cut structures are limited to the number of equilibrium

equations of the cut structure (e.g., two subscripts for a straight beam
with no axial load, ZV=ZM=0). These coordinates are a sub-group
of group (x,y). The selection of this group is arbitrary. However, a
wise selection will reduce the computations in determining the flexibility
matrix and/or the aceuracy and ease of the solution.

(¢,d) = subscripts for cases in which the cut load (P_) is unknown as
well as the deformation (A ). There exists, however, a linear relation-
ship between the deformation and loads. The forces of the c type can be
visualized as redundants which are on elastic supports rather than on
fixed supports such 28 x type forces. The deformation A, can be com-
puted, once all the loads acting on the structure are knqu by the linear
relationship which exists between the loads and deformations.

All degrees of freedom described above can exist at a point in a beam, e.g.,

a rigid transverse support (y or s) with a flexible axial support (d) and with no
rotational support ). Each degree of freedom is associated with two consecu-
tive symbols. One symbol denotes a load and the other symbol denotes a de-
formation. When a matrix is described by two consecutive subscript symbols
it expresses a relationship between degrees of freedom of the same type. When
the subscripts are not consecutive the matrix expresses relationships between
two different types of degrees of freedom,

(3) The properties of the sub-structure are computed. The equilibrium matrix gij
relates the loads to the reactions. The flexibility matrix fij ,the elements of
which express the deflection at i1 due to a unit load at j, is computed by various
method available in the literature, e.g., Paragraph 2.1.1.1 and 2.1.1.2 and
References 4-5 and 4-6.
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In a given linear problem of n degrees of freedom, either the applied load or
deformation corresponding to each degree of freedom is known, or a known linear relation-
ship exists between the load and displacement. Thus there are essentially n quantities to be
determined before the structural problem 18 solved. The necessary n simultaneous equations
are supplied by the equations of equilibrium and/or compatibility at eachgeneralized coordinate.

The solutions will be presented in matrix form to simplify the manipulation and
meaning of the equations.

4,2.3.2 Equivalent Loading

In order to minimize the amount of computations necessary to solve the structural
problem it is convenient to convert any arbitrary loading on a linear structure to a series of
equivalent loadings acting at the points of interest of the structure, which will cause the same
deformations as the actual loads and temperatures, at the points of interest. The interrelation-
ship between the generalized displacements and loads can be expressed by a stiffness (K) or
flexibility (f) matrix for a given geometry and material prior to applying the loads. There
are various methods of obtalning K and f, some of which are demonstrated in Paragraph2.1.4,2
and 2.1, 3 and in References 4-5 and 4-6. The solution would then require obtaining equiva-
lent loads from any arbitrary loading and employing the stiffness and/or flexibility matrix dnd
the requirements of compatibility and equilibrium at each point of interest to obtain n (n de-
grees of freedom) simultaneous equations for the n unknowns. It is possible to solve the pro-
blem for umit loadings. This considerably reduces the work Involved in analyzing a structure
for more than one set of loads, which can be obtained from linear combinations of the unit
loads.

The equivalent loadings at the points of interest are the negatives of the fixed end
reactions (see Paragraph 4.2.2). The fixed end reactions are exactly those mechanical loads
which, when applied fo the elemental beams, will negate the end displacements caused by the
applied mechanical and thermal stimulation. Applying the negative of these fixed end reactions
to the elemental beams would cause the same deformations as the applied mechanical and
thermal loads. K more than one beam has the same degree of freedom (adjacent beams, etc.)
then the equivalent mechanical load associated with that degree of freedom would be the nega-
tive of the sum of the fixed end reactions of all such beams.

The beam-like structure can be analyzed as follows:

(1) Impose rigid restraints (Imaginary jacks) at all the n degrees of freedom of
the structure. The jacks are applied at all the joints., This includes the
reactions.

(2) Apply the mechanical and thermal loads on the structure and determine the
forces in the jacks. These are the fixed end reactions whose solution is
shown in Paragraph 4.2.2,

{(3) Remove the jacks and applied loads from the structure and apply the equiva-
lent loading (negative of fixed end reactions) to the actual structure.

4) Employing the flexibility or stiffness method to solve the generalized forces
and displacements at the n degrees of freedom.

(5) Employ the forces and displacements at each end of the elemental beams,

together with the applied loads and temperatures, to determine the stresses
and strains anywhere In the structure.
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F; = F, = Evo €, fj.c' = Evo z €1 fj,c'
-1 -2 €Ly
=EA X ¢ = —=— EA Z
L -
oo J (U+1)(1+131) ) 11 oo j+1

4,2.3 General Solution of Statically Indeterminate Beams

The solution of a structural problem requires the simultaneous solution of the
equations of compatibility and equilibrium. For linear stable structures it is possible to
arrive at the final solution by a series of intermediate steps, cuts, (releases) and restraints,
each of which is an artifice to simplify the solution and whose total effect is zero. This is
analogous to the addition of a chemical catalyst which aids in the chemical combination of
various elements but does not enter into the final form of the chemical solution. Compat-
ibility and equilibrium are maintained (for each degree of freedom) at each intermediate
step in the solution so that the final solution simultaneously satisfies equilibrium and com-
patibility but removes any cuts or restraints that do not exist on the actual structure.

The statically indeterminate problem is simplified with the introduction of
generalized coordinates (degrees of freedom). The relationships beiween these coordinates,
and the corresponding loads are sufficient to determine the stresses, and deformations in
the structure. The relationships are either the equilibrium and flexibility matrices or the
stiffness matrix (which incorporates equilibrium in its derivation). The loads are the
negative of the fixed end reactions determined in Paragraph 4.2.2. The solution is accom-
plished by solving the linear simultaneous equations obtained from the above relationships.

4.2.3.1  Degrees of Freedom

The solution to a stable structural problem is complete when all the loads and
displacements {stresses and strains) at each point of the structure are known to an accept-
able degree of accuracy. A beam-like structure can be visualized as a network of small
beams between points of structural interest, i.e., joints, sudden changes in geometry,
changes in direction, ete. The linear solution is also considered complete if the loads and
deformations of all such points are known. The relative deformation between the ends of
the small beams, together with the loads acting on these beams, could then be employed to
determine the internal loads (stresses) acting on the beams, Thus the solution of a structure

- resolves itself into the determination of loads and deformations at the ends of the elemental
beams (all the degrees of freedom).

The possible deformations and loads which eachend (point) of the elemental beams
could undergo are defined as degrees of freedom of the structure and are the "generalized
_coordinates" of the structural problem. In a generalized spatial problem of three dimensions
there are a maximum of six possible degrees of freedom for a point. These are the displace-
ments in the directions of the three orthogonal axes and the rotations about these axes. In a
planar problem of two dimensions there is a maximum of three possible degrees of freedom
for a point. These are the displacements in the direction of the two orthogonal axes in the
plane of the structure and the rotation about the third axis which is perpendicular to the plane
of the structure. I many problems the structure will be such that some of the degrees of
freedom can be ignored. In some cases, ‘the loads and deformations coresponding to a degree
of freedom are independent of other degrees of freedom (uncoupled) and the structural pro-
blem can be solved as separate problems. In any case, all possible degrees of freedom should
be investigated and simplified (omitied, uncoupled, etc.) before attempting to continue the
solution.
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P=Eolo Vio (12 Vi1 (e _12_
o = L | 0+1 o+rz) TT1+1

E 1 w
_p =00 Lj -
--PL—PO— I [WLI +wL2. RS (6

From Eq. @d) of Paragraph 4.2.2.4 andy =1,

. w
= -1 L 5,8
M, = EJL V"6 Y12" TS 2+772
a-j) wp

M =2 E z o Li

o (+1) (3+2)
From Eq. (2b) of Paragraph 4.2.2.2,
ML = Mo + POL

- S
ML_EoIo[wlo+wL1+ 6 Yi2- - -t

+ b

+

L (4- j—?_-ﬁ—)]=2Eol S

From Egs. (3a) and (3b) of Paragraph 4.2.2.3 and ¥ =1,

€ € €
- _ . L1 L _ Lj
F; = F, EA, (em+ R kS ) = E0A02j+1
EOIO
(z) Varisble (Linear) EIand EA (c=1;~%—7 =10,e=9)\
L'L
From Eqs. (6a) and (6b) of Paragraph 4.2.2.4,
E
_ _ oo
P, = Py = —p— W Py tWpiPyy tWpePrate o)

M, = M, = EJI (7

p;,q 20d By

Eolo

LoM0,1 *¥11™y,1 * VL2 M2t ¢ ¢)
4 are obtained from Figures 4.2.2.3-3 and -4.

-p, =P = [“'Lo (-.41) +wp; (.05) +wy, (-115) +. . ]

L e L

M, =M =EI [“’Lo (+.46) + Wy, (+.067) +Wy, (.007) +. . ]

L (o] o0

Ey 4o

E;Aq

and (6¢) of Paragraph 4.2.2.4,

K ¢'=1 and
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= 10 and e'=9, then from Egs.

(3b) of Paragraph 4.2.2.3

®)

(% l)WL
(+1Kj+2)

10

®



4.2.2.5 (Cont'd)

P

L 1.1,
gL~ "t% *3) " -1/8

M -2 (241 - 2+ 1/2)

o _ 27 T _ 8-8/2 _ 18 _ _ oo

P 6 5 @ne - 1en -
q; L

My
—L - L0401 - .1667 + .1667 = .0401
q; L

qlb./in
F44 44

2 S

.167 gL lﬁ- L/3 —ple— L/3 —»le— L/3 —-{ .167 qL
<

L >y
A I 9 -t 2
+,0401 qL +. 0401 oL

Using Figures 4.2.2.3-1 and -2,

= _B89, m -.225

Pgg 20

= ,56, -. 167

Pao Moo

2 2
pL=L8TDIY (gg) - L3311 9 (56)=-.167q L

0 Graphical solution

checks analytical

2 2 8 s
M, = L6TLIY g o) - £33 (167) = Loa07qL? | cTuAHOnE:

PROBLEM C: Thermal Loading (¥= 1)

A description of the thermal deformation is approximated by a power series.
n

ooy v () e () vy @) 2 ()]
€' = €;, * €4 (%)1 T (—I’i—)j =.%1) €L (%)j

where x 1s the distance from the O end.

(1) Constant EI and EA

From Eq. @b) of Paragraph 4.2.2.4, and ¥ = 1,
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4.2,2.5 (Cont'd)

The influence parameters P4 and P, , are obtained from Eq. (1b) of Paragraph 4.2.2.3.
’ ’

N

/12 .5 1 8 .5 _
P11 ‘(23.5) (1+1) {2 e T Tz [1+'5(9)]} = -1383
_ {12 .5 1 9 _ _.5 _
Py,1 ”(23.5) (2+1){2 M [1+'5‘9)]} -1115
P, = -.5P [5.5 (.1383) +4.5 (.1115)] = -.631P
P, = - (B, +P) = P(.6312-1.00) = -.369P
Similarly, from Eqs. (2a)and (2b) of Paragraph 4.2.2.3 for Moment M,
. [.12 \[_.5 19 3.5 1 __
o1 ‘(23.5)( 2 )[' i T ] = -.0426
{12 \( .5 19 3.5 1 __
m,1 ’(23.5)( 3 )[' g " 12 "8 ] = =-0408
Mo = -yLP -{ml,l [1 +e (1 -v)] +m2'1 ve}
M, = -.5LP [5.5 (-.0426) + 4.5 (—.0408)] = .209PL
M, =M +PL+7, =PL [.209 + (-.6312) + .5] = .078PL
EL - ? EL = }ro EL
| 3P }-631 P
w_/ .
+.078 PL +.209 PL
PROBLEM B: Uniform lLoad in Center Third of Span and Constant EI
qlb. /in gqlb./in g lb. /in
_ v = .67 v=.33
KX ?'P{!#f KX

ALY

e L/3-sla L/3-wle L/3 |e— 2 L/3—sdus L/3-+f |« L/3 wla—2L/3 ]

From Eqs. (3e) and (3f) of Paragraph 4.2.2.2 (r=0),

3 12(.67) |
Po _ 7067 [6" r ]  —(.33)° [6_ 12;.33)]
oL O @6 6 i
8 1 -32+45
Po 2 @ 2 ® 2T _ e
q, L - 6 - 6 - 6 B
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= - LYy _ .5PL)
Py = Pl.o(L) "1‘0( i

Po = -5P

From Eq. (1b) of Paragraph 4.2.2.2,

PL=_(P°+P)="(-.5P+P)=_..5P
7y PvL  Ti0" -.25  (Figure 4.2,2.3-2, j=1)
MO = -m]_’o ML = ,2b (-SPL)

M, = .125 PL
From Eq. {2b) of Paragraph 4.2.2.2,

M; =M +PL+ 0"’1, = PL (.125 - .5 +.5) = .125 PL

L
The solution (using sign convention) follows:
.125 PL 4P .125 PL
]
5P Ye—— L/2 — ¢l Ysp
L
Checking the solution by Eq. (2b) and (2d) of Paragraph 4.2.2.4,
P
o _ _ 2[ i ] -
p = —(-8)7[3-2(.5) = -.5
M
o _ 2 _
oL - (.5)" (1 -.5)y = .125

{2) Linpear EI and EOIO/__]_ELIL =10, e=1,e=9, v=.5)

From Eq. {4) of Paragraph 4.2.2.3,
1 _ 12 - 12
1+e +(e2/6) 23.5

From Eq. (la) of Paragraph 4.2.2.3 for Transverse Load Po'

C

= - R . . .C-n
P L = VLP{pl,c+ e I [(ccn)v a-v) p1+n,c]}
n=o
PoL = -y LP {pl,l + e [(1 -v) P,1 +Vp2'1]}
PL = -vLP {pl’l [1 +e(1-v)] +Py 1 ¥ e}
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L% [.110 + 9 (115)]

Pl = - omom
C.P =-.513qL
and
M -.Llq[-.010 -9 co28)) _ .. L2
0 ©+1)(©+2) il b

Substituting in Eqs. (1b) and {2b) of Paragraph 4.2.2.2,

-P. =- Lq
PL '573qL+07+1
P, =-.427qL
M, =.181q L% + (- .573 qU)L o Llq __ 058 q L2
L= AR ey T 00
The above solution to the problem is illustrated by the following sketch:
q lb/in. |
.ossqL( T T T T T : T ).131qu
.427 qu .573 qL,
L

Note how the fixed end reactions increase on the stiffer end.

4.2.2.5 Use of Equations and Graphs

The technique of using the equations or graphs of the previous paragraph is
illustrated in a few simple problems which are purposely made simple to compare with
known solutions and to show the effect of variable stiffness.

PROBLEM A: Concentrated Load at Center of Span L

P .
ML P f N P Mo
LT/ §T o v
N

-—— L/z—-l
-— L

I

L/2 _
T 7P

N

(1) Constant EI ¢ =e =0 (Note: Eg. 2b) and (2d) of Paragraph 4.2.2.4 could be
applied directly) :

Using the graphical solutions,
PL PL
0 0

(Figure 4.2.2.3-1, j=1)

L BL "Ppo=10
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4.2.2.4 {(Cont'd)

Equations (1) Athrough {5) define the fixed end moments for all types of mechanical
and thermal loads on a beam of constant cross section. The solution can be obtained by direct
solution in the eguations or from the graphical solutions presented in Figures 4.2.2.3-1 and

-2 for unit solutions which must be multiplied by -—mL, -'P and —f}' toobtain M , P_ and
F L L o' "o

o'
CASE B: Variable EI {c# 0) and Load Distributed Over Complete Span (¥ = 1)

Another condition of structural interest and simplicity is a beam of variable EI
where the loads are continuously distributed over the entire span (¥ = 1).

From substitution of ¥ =1 in Egs. (1), (2) and (3) of Paragraph 4.2.2.3, the
general solution becomes:

2
Lyt L qp,

P,L=E LW LPy.e X +1(pk +1,¢ P +1+e, c)- T+ (r+2) (pr+2,c TePrig te, ) ©62)

LyTL L2qL
M, = EoIcuW Lm] ¢ TET1{Mk+1,c Tkl +e,c )T TIED) Mot9, ¢ T Mpin4e, ¢ (6b)

— LTL
F ='E0AoEij,c'+'E_+f f +1,¢' T° fk+1+c c 6e)

where the values of p; ., and mj o are given in Figures 4.2.2.3-3 through -6. Terms such
as F, Mand P are 1gnored gsince they are reacted directly at the support. (Note that recourse
must be taken to Eqs. (1), (2) and (3) of Paragraph 4.2.2.3 if ¢#0 or v #1).

. . . . 1
Example: The equations are illustrated for a uniform load on a beam of linear o0 and
EI
0 [o]

ELEp

= 10.

LT e

Y
Z
2 M
|e L —
From the data,
EoIo
c=1, =5+ =10, r=0, q,. =q
ELEL L

and from Figures 4.2.2.3-3 and 4,

.110 p =.115

Prig,e " Pg,17 r+2+c,¢  P3,1

mr+2,c=m2!1=-.010 mr+2+c,c=m3,1=-'028

Substituting in Egs. (6a) and (6b) results in
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From Egs. (2a) and (2b) of Paragraph 4.2.2.3,

M
_ o _ v 6 v
mjao - EoIow'L ! [-2+]+2] te)
. v 6 v
Mo = (Eolow L) T+ [_2+j+2 4d)

) Distributed Axial Loadr=rL_gk 4=k +1)

- k
TL 'r='rLL’
L —te s

=

From Eqs. (2a) and (3a) of Paragraph 4.2.2.2 and (1b), (2b$ and (3b) of Paragraph 4.2.2.3,

7 =-a'r 4 _ - quLy
L k+1 k+1
z at, _ erL

L k+1 k+1

P L
Rua,0° '(—vLy'roL)/kﬂ = ( k12+vz )(_;.— - —k_-l%)

P 2
o _ 12 v 1 v .
yT, | &) &) [+ - v - Ga)
M . '
= 0 _{x2v y(_ 1 v
Mea,0 - Coyrt LL)/k+1 B ( k +2 ) ( 6 ' Ik +3) )
M 2 ‘
0o _ 6V 1 v
yr LT &) k+2) [’ O k+3] (5b)
| F, (k +1) y
fee1,0 = vLT T k+2
Fo _ y2 :
TL T &) &) (3¢)
4.79
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] (Plotted in Figure 4. 2. 2.3-2)

1.’o - _ V3 [ 12v
q;L r+l) (r+2) (r+3) Tr+4
s S [2+ 82
42,0 mL r+3 r +4
Mo v [ 2+ 2% ]
qLL2 Tr+l) @+2) (r+3) r+4

P

qL‘I). =T ,,3(1_%)

M

qL::z: ”3(g_‘Tv')

H r =1 (linearly varying load),

P

T (- )
M

qL:2= "3(% - % )

(4) Thermasal Loading w' ==w'L Cj

T Vewt  #d
! wi=wip k
L
4 TPO
E e
fo—— 82— I o
L -l
From Egs. (1a) and (1b) of Paragraph 4. 2. 2. 3,
o = oot _ ¥ [6-122
js0 EOIOWTL j+1 j+2
p = ELY'y, v [6_12!1]
o L j+1 j+2
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(3b)

(3c)

(3d)

(3e)

@)

3g)

8h)

4a)

{4b)



4.2.2.4 (Cont'd)

{2) Concentrated Transverse Load P, (i=1)

P
Z } e
Z v=a/L
-~ a !
,5'--——--— e} -)wo
e L -
Employing the same equations as (1) above gives
= =
L= Pa v PL
= v_ 1 __v_
P10~ THNI/1Z) [ 5 - 1+3 @ +°)]
-POL -POL
mL = 5pL - P1.0” v (3 -2v) (Plotted in Figure 4.2.2.3-1) (2a)
P
P°=-v2(3-2v) {2b)

| 1 1
7 B1/12) [’T + 5 (5 +°)]

o _ = - _ : -
VPL - ml,o- v (1-v) (Plotted in Figure 4.2.2.3 2) (2¢)
M
-§L2=y2(1-v) | @d)

(3) Distributed Transverse Load q=q. t* (=r+2)

_ r
qLé q=q; ¢ P
7 o
. A ] MO
{ -——
L -

Employing the ssame2 eguations gives

m _ ,I_/_.L_%.I:_
L = ThyE+2)

- BL v 12 v
= = [ 6 - =% ] (Plotted in Figure 4.2.2.3-1)  (3a)

Prig,0 -~ M L T+
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4.2.2.4 Determination of Fixed End Reaction For Special Cases

CASE A: Constant EI (c=0, e=0, . . D=1/12)

The beam of constant bending stiffness (EI) simplifies the general solution by
c
making the term % in Egs. (la), (2a) and (3a) of Paragraph 4.2.2.3 identically zero.

Solutions for P_ and M _ are obtained by elemental types of loads and the solutions are
the curves plot?ed in F?gures 4.2.2.3-1 and -2. The values of P. and M. are cbtained

from the equilibrium Egs. (1b), (2b) and (3b) of Paragraph 4. 2.2.1‘2. L
(1) Pure Moment M (j=0)
M
Z b p
Z, 1 N
a= v L —» J
L o M°
From Eq. (2a) of Paragraph 4.2.2.2 and (1b) of Paragraph 4.2.2.3
=M
-P L
= 9 4 'y r L
Po,o T Py . O(I/12) [ g *0*+ 3 ( 2 *0)]
Poo = 6v (1 -v) (Plotted in Figure 4.2.2.3-1) (1a)
-%%
R ¥ - M -V s
Po_Lpo,o" Lﬁv(l V)

From Eq. (2b) of Paragraph 4.2.2.3,

=
|

—':IT - wwam L0 (5 +0)]

v @v -2) (Plotted in Figure 4.2.2.3-2) (1b)

=2
1

=
u

-Mv 3r -2).
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4,2.2.3 (Cont'd)

0 . w'=w' L’j
_“;: _m°=7n ¢l P A
”y - I)w /
\&\r —— o
- afe— o
“TIAR " 1
[\ r /

o
i
2
4
<
=1
ol—i
=)
2
&

0 AVA /

I A IEAVEAY ' /

0 \\HRNEAN AN NEY /1
TG SN A
a0 LA NI/
Al
Y My,0 1
/
-.25 \ N o

-.30 \

0,0 // /(-m(,’o :2

-.35 A

] 7T -
4, 8 .8 1.0

FIGURE 4.2.2.3-2 FIXED END REACTION FOR CONSTANT EI; END MOMENT (Mo)
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1.6
PoL o PoL
1
EoIo w L m
n
\\

\

\
\.
p |\

b
l \

0 .2 .4 .6 .8 1.0
. v =a/L

FIGURE 4.2.2.3-1 FIXED END REACTION FOR CONSTANT EI; TRANSVERSE END LOAD (Pc;)
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cantilever moment, % 'L’ which would cause a jth power variation of curvature on a beam

-P L ~-F
whose 1/EI varies as a power of c. Similiarly, p = L, and £, = 0 The
j,e mL L ?L'

formulations and graphical aids can be employed to obtain the fixed end reactions due to
most types of mechanical or thermal loadings. The mechanical and thermal loads are
first allowed to act upon the cantilever beam. Then the loadings and thermal deformation
are decomposed into a sum of loadings as described in Paragraph 4.2. 2.2 and {llustrated
in Figure 4.2.2.2-1. Each component is then analyzed for the fixed end reactions (P_,
M _, and F ) it causes. This analysis is done in accordance with Eqs. (1) through (5? or
with the gr?a.phical alds, Figures 4.2.2.3-1 through -6. The total fixed end reactions are
the sum of all such effects.

Dlustrative examples follow to 1llustrate the computation technique. Graphical
solutions of the equations are shown for special conditions which simplify the general
equations by eliminating terms inside the summation sign (i.e., ¢=0or v =1).
These cases are of practical utility and are shown in Figures 4.2.2.3-1 through -6. The
special conditions are:

(1) EIconstant and any distribution of applied load(% '; =% L)

(2) 1/EI varying linearly and moment expressible as a sum of power functions
initiating at point O (v=1)

(3) 1/EI varying parabolically and moment expressible as a sum of power functions
initiating at point O (¥ = 1}.

Equations {1b), {2b} and (3b) of Paragraph 4. 2.2.3 are simpler to apply then (la),

(2a) and (3a) thereof, but care must be taken that the correct value of j is employed for
each type of load.
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-8 = f = - d 3b
F j,c . _e' 3b)
L 0+1)(1+c‘+1)
where 1 9
Sl [ T3 ) o)) - L) | | e - e ) @
12 {c+1)(c+2)(c+3) 1) c+2)2+3)
and
j = exponent describing curvature variation due to temperature or the
moment variation due to mechanical loading, e.g.,
j = o, pure moment or eccentric axial load
h j = 1, concentrated transverse load r
when 4 = p42, fora varying transverse load, q = qr, 4
j = k+l, for a varying eccentric axial load, T = T, ¢ k
and also
EoIo
e = - 1 = bending stiffness ratio parameter {5a)
E|I
LL
Evo
' = ———— -1 = axial stiffness ratio parameter {5b)
E A
L7L
v = a/L = ratio of loaded length of beam to length of beam {5¢)
¢
= ot R S .
¢ = power variation of 1/EI = EL [ l+e ( T ) ] {5d)
1 X c’
T = i i = e 1 ————
¢ power variation of 1/EA E A [ 1+e ( T ) ] (5e)
EoIo’ ELIL = Bending stiffness at x = O and L, respectively

Evo’ ELAL = Axial stiffness at x = O and L, respectively

c Cn

(n+1) term of binomial expansion, i.e., the number of combinations of
¢ items taken n at a time = ¢!/n! (¢c-n)!

¢ Co = First term of binomial expansion = 1

The above equations are obtained by applying the mechanical and thermal loads to
the statically determinate cantilever fixed at L and determining the deflections at the free
end O. The loads necessary to negate these deflections are P, M, and F,. The solution
is given in terms of each type of load and includes the effect o? varying bending and axial
stiffness. Sclutions are presented in terms of influence parameter (pj o’ mj o’ fj c) which
are the fixed end reei&tions (PO, Mo’ Fo) to a unit type of mechanical or thermatl load. For
= —ﬁg is the negative of the ratio of the fixed end moment, Mo’ to the

L

example, mj °
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4.2.2.3 Determination of Fixed End Reactions

The mechanical loads (fixed end reactions) that are required at the end of the
beam (PO, Mo, FO) to negate the deflections due to the applied loads and thermal stimuli

are presented below in a general form (as derived in Reference 4-4) and are then reduced
for particular types of problems. The reactions at the other end (PL, ML’ FL) are

obtained by employing the equilibrium Eqs. (1b), (2b), and (3b) of Paragraph 4.2.2.2.

The general solution for the fixed end reactions at the end of the beam (see
Figure 4.2.2.2-1) is as follows:

e
= ' _ n c-n
Pl = E LW LPe” (Fy-M) [po,c ve 2 (ch)v d-v)" "p n,c }

n=o
viyrT c
L n c~n
* k+1 [pk‘i-llc Te §=O(ccn)y (1.-”) pk"‘l"’nsc ]
¢
n —
- v L P[pl’c+ez (ch)v (l-u)cnp1+nc] (1a)
. n=o ’
2
(vL) q c '
L n c-n
T @H)@+2) prfz.c re nzm(ccn).v (@ -v) Prigen,e
il n ¢
- -n
M, = EoIOW'Lmj,c + (Fy-M) [ Moe t € Z(ch)V d-v) mn,c]
vyt L < 1:1n=0 c-n
+ T ,[m k+l,c + e Z(CCH)V {1-v) mk+1+n,c] (2a)
n=o
c
-vLP [ml c +eZ(ch)vn(1 -v )™ my c]
2 ¥ n=0 H
(vL) qL S n c~n
- TR [mr+2,c+e2(ccn)v {a -v) mr+2+n’c]
n=o
F =EA &' f +F[f +e'§: erc Jo® @ -p)0 g
o oo L je 0,¢ n=o( n) n,c'
cl
vL) . [
T, | f +e' ¥ (e'c ), n ctn ]
+1 -
k+1) L L k+l,¢ n=c$ n)v (t -v) £k+1+n,c' {3a)
where
P L
- 0 = = Ld 1 1 __1 v e
7 Pic™ G+DD [ 2 * e(c'+1 T ) T J2 (1 *E’H)](lb’
M
- o_ _ - v 1 1 1 v (1 e ]
7?2:1, = Mie T GD [_ 6 -e(c+2 T ¢c+3 )+ j+2 ( 2 +C+2) (2b)
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l-_ L —»p
r
qQ=q;¢ T = P
qr, L“ . - . INsT=T, & . o
Fi, 4 2 T AN L vy o = T
T ; }‘/ X o] — 1y 1 —_— FO
e— 2 ) ML\ f—— a —u JMo
ML PL a§ — P a; -
. ]3 L
(a) Transverse Mechanical Loads {b) Axial Mechanical loads
(M, Pand q) (Fand 71)
e
€L
-~
7 J
— 3 —
al «—
{c) Unrestrained Thermal Curvature (d) Unrestrained Thermal Axial Elongation

{e) Internal Cantilever Load

FIGURE 4.2.2.2-1 MECHANICAL AND THERMAL LOADS ACTING ON
CANTILEVER BEAM
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4.2.2.2

of such loads at different initiation points (see illustrative

Applied Beam l.oads

Various types of loading conditions are considered to act on the beam. The
location of the load is arbitrary (Figure 4.2.2. 2-1) but its distribution is assumed to be
expressible as a power function. Any loading can be approximated by the superposition

The type of loading (Figure 4.2.2. 2-1) is as follows:

L

where Po' Mo’ F0 are to be determined in order to find the fixed end reactions {PO, P

(1)
(2}
®

“)
©)

(6)
)

Concentrated Moment, M
Concentrated Transverse Load, P
Varying Transverse Load, q = 9y,

Concentrated Axial Force, F, with eccentricity, y - Kk
Varying Eccentric Axial Force (Shear Flow), T = TL ¢

Varying Thermal Curvature, w' = w' L ¢!
Varying Thermal Axial Elongation, €' = ¢ 'L ¢!

With reference to Figure 4.2.2.2-1(e), let

Total transverse cantilever load at L due to applied mechanical loads
Total cantilever moment at L due to applied mechanical load

Total cantilever axial load at L due to applied mechanical load

[ L
B J, 948 F P = oy P
1 1
azf q(1-§)dg+Pa+M-af Ty dt - Fy
0 0
2
aqL B.TLY
ST TPRRTM - - Fy

a

1 . aty
'/; Tdf + F 'S + F

aqL

P+ B =P + ——+p

‘?ﬁ —
M0+P0L+ M + PL

I —_ "
Fo * ”}i— Fo *

o r+1 5
aqL aTLy
L o " Yo~ T @y TPATM- - Fy
aTL

k+1 +F

M, My, F, and F,).
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(2a)

(3a)

(1b)

(2b)

(3b)
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4.2.2.1 (Cont'd)

=]
% (a) Joint

For Joint:
Positive P Loads are up (PL = PLL + PLR) 1)
Positive F Loads are to the right (FL = FLL - FLR) {2)
Positive M Loads are counterclockwise (ML = MLL - MLR) {3)

Positive direction and displacements and rotations are in the same direction as
positive loads and moments.

S e  TLL IR, .S
Dy ol

P

v PoL Py My Mg Prg OR

oL 1 T M
OR

——

FOL OL (b) Adjacent Beams OR FOR

For Adjacent Beams:

Positive curvature w when curve is concave downward
Inside of curve to right when going to right
Tensile strains for upper fibers

Positive moment causes compression in upper fibers
Opposite in sense to positive curvature
Positive moment on right side of beam is counterclockwise
Positive moment on left side of beam is clockwise

Positive transverse loads are in positive y direction
Positive axial load causes tension in member

Positive axial load on right side of beam is to the right
Positive axial load on left side of beam is to the left

FIGURE 4.2.2.1-1 SIGN CONVENTION FOR COMBINING FIXED END REACTIONS OF
BEAMS TO DETERMINE RESULTANT FIXED END REACTIONS AT
A JOINT
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4.2.2 Fixed End Reactions

The fixed end resctions are those mechanical loads applied at the ends of a
beam-like structure which do not allow the ends to move when the beam is subjected to
mechanical and thermal stimuli. The negative of the fixed end reactions to the applied
loads and temperatures can be shown to be equivalent mechanical loads acting at the
joints which will produce the same deformations at the joint. This is discussed in
Paragraph 2.1.6 and Reference 4-4. The transformation of mechanical and thermal
loads acting all along the structure to equivalent loads at the joints assist in permit-
ting the reduction of the structural problem to a finite number of unknowns, This as-
sists in a systematic procedure for solving statically indeterminate structures (also
referred to as indeterminate structures) subjected to mechanical and thermal loads as
shown in Paragraph 4. 2, 3,

4.2.2.1 Sign Convention

The sign convention for individual elemental beams is in accordance with
standard engineering practices which state that loads which cause tension in a member or
compression in upper (positive) fibers are positive. However, care must be taken in
determining the resultant fixed end reactions at a joint. This is shown by Egs. (1) through
(3) and Figure 4.2.2.1-1 which indicate that the resultant fixed end reactions at a joint in
the structure are obtained by first reversing the signs of the axial and moment reactions of
the beam to the right of the joint {the sign of the shear reaction of the beam to the right of
the joint is not changed) and then adding algebraically with the corresponding axial, moment
and shear reactions of the beam to the left of the joint. The fixed end reaction on each beam
is determined from Egs. (1b), (2b) and (3b) of Paragraph 4.2.2.2 and (1), (2) and (3) of
Paragraph 4.2.2.3. The analyst need not bother to combine fixed end reactions on the left
and right hand side of a joint until the final loads at a joint are required. This last step is
simple to do with Egs. (1), (2) and (3} or Figure 4. 2.2.1-1, and is demonstrated in
Illustrative Problem IA of Paragraph 4. 2,6.1 and in Figure 4. 2. 4-1.
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4.2.1 (Cont'd)

Substituting in Egs. (3a) and (3b), the absolute values of the deflections and
glope obtained are

5 5
on=-f W, m dx +f et-fvdx
o o
5

[- f @.0x2-114.1x + 261.6){x-5)dx+0] x 1078
¢

1

= 1100 % 10”8 inch.
5 5
A = -f W, m dx +f €, f, dx
0 o]
2 2 -6 -6
- [0 +f 2.0 x 2 +10.0 x -138.9) (-1) dx] x10°% = 486 x 107° inch.
0
5 5
60 = -f wt' m' dx+f et- fr dx
[0 o
2 2 -6 -6
= [-f @.0x° -114.1x +261.6) {1)dx+0] x107% = -49 x 107° radians.
(8]

Figure 4.2.1-2(d) shows the vertical unit virtual load reacted at point B. Point B
does not deflect vertically. However, a rotation does occur at this point, Thus, the vertical
deflection of point O obtained by reacting the virtual load in this manner is equal to the ver-
tical distance from the tangent drawn at B to the curve at O' (Figure 4.2.1-2(¢g)), or

10

A = [-f (4.0x2+10.9x-—363.4)(x—5)] x 1078
5

- _ -6
ov = = 138 x 10 “inch.

The deflections of a beam-like structure can always be obtained by integrating the
curvatures and elongations as shown ahove. However, as shown In Paragraph 4.2.3, a more
efficient procedure for obtaining deflections, which lends itself conveniently to digital com-
puting techniques, consists of using flexibility coefficients (Paragraph 2.1.1.1). Ignoring
shear and axial energy due to mechanical loads, the flexibility coefficients are

~ m, m dx
61] - f_EjI_ @)

through which it is possible to determine the deflection at a degree of freedom by super-
position, i.e.,

A= ‘jz: aij Pj. ()

where the Pj's are the negative of the fixed end reactions due to mechanical and thermal
loads, at the locations of the predetermined ] degrees of freedom. One of the advantages

of using this procedure lies in the fact that the flexibility coefficients are approximately
constant structural properties which do not depend on the mechanical and only slightly on the
thermal loading, Once calculated, they can be used to obtain the deflections for any set of
applied loads.
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4.2.1 (Cont'd)

By the principle of virtual work, derivable from energy considerations (Paragraph
2,1.2), the deflection and slope at any point on a line structure subjected tc combined me-
chanical and thermal loading (neglecting shear strain energy) are

A=-fwt'mdx+f§t-fdx (32)

ez-fwt-m'dx+fat-f*dx (3b)

where m and f are the virtual moments and axial forces, respectively, caused by applying
a unit virtual load at the point in the direction of the desired deflection component; m' and
f' are the virtual moments and axial forces caused by the application of a unit virtual
moment at the point at which the slope is to be determined.

The principle of virtual work equates the external work done by the virtual force
system acting through the actual externsl displacements to the corresponding internal energy
due to the internal virtual stresses acting through the actual internal strains. Because of
this, the deflection or slope at the point of applied virtual force is determined relative to the
datum defined by the reactions to the virtual force. The inherent advantage in this concept
lies in the fact that once the actual stresses are determined for a statically indeterminate
structure, the deflection or slope of any point on the structure can be determined relative
to a datum located in the vicinity of the point by dealing with the portion of the structure
lying in that vicinity, since the virtual stresses outside the region affected by the virtual
force system are identically zero. The virtual force system can be taken as a simple
determinate one, thereby avoiding the solution of an additional indeterminate problem in-
volving the virtual forces and considerably minimizing the work involved.

The preceding concepts are illustrated by the following problem in which Figure
4.2.1-2(a) shows the distribution of curvature and axial elongation in an indeterminate
beam; this information has been obtained from the solution of the indeterminate beam pro-
blem given In Paragraph 4.2.3.

Under the action of thermal and mechanical loads, a point initially located at O
moves to the deflected position O'. In order to determine the absolute deflection and ro-
tation of this point (Figure 4.2.1-2()), the virtual loads must be reacted at points which
define a fixed datum. Point A, located at the fixed wall, provides one such datum since
this point has zero vertical and horizontal deflection and zero slope. Thus, as shown in
Figure 4.2.1-2(c), the virtual force systems are obtained by reacting unit virtual loads
and moments applied at point O by determinate shears, axial loads, and moments at point A.
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4.2,1 (Cont'd)

! M
W) = W) s weo = - {(—— +—) ®
El EI
— — — 1
S0 =T TR = A+ @)
AE AE
where
wt(x) =  Total rotation (curvature) of cross section per umit of length.
w' {x) = Rotation of cross section of unrestrained beam, per unit of length
1
due to thermal loading = - —
El
w(x) = Rotation of cross section per uit of length due to applied and
redundant {mechanical) loading = ~ —o—
EI
€ to:) = Total axisl strain at elastic centroid
& X =  Axial strain of unrestrained beam at elastic centroid due to thermal
T
loading = —
A AE
€ x) =  Axial strain at elastic centroid due to applied and redundant (mechan-
ical) loading = ——
AE
The total curvature wt(x) and axial strain € t(x) have the same significance in the
calculation of thermo-mechanical deflections that the familiar 1;:&1 and AFE for purely
t
mechanical loading problems. Thus, once the quantities __h_l ) F ) M and

EI AE EI
TF_‘_—- have been determined by the methods of Sub-section 4.1, the beam deflections can
AE :
be calculated, as usual, by energy methods.

Y

FIGURE 4.2.1-1 CURVATURE w(x) AND ELONGATION & {x) DUE TO COMBINED
MECHANICAL AND THERMAL LOADING AS A FUNCTION OF
DISTANCE ALONG THE SPAN
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4.1.2.4 Power Series Solution - Corrections for Bending Ahout Both Axes

The power series solution discussed in Paragraph 4.1.2.3 assumes that bending
takes place about only one principal axis UU . This is the case when the VV principal axis
is an axis of symmetry for both the elastic geometry and the aT distribution. Bending about
the VV axis (w'V # 0) is caused by unsymmetrical geometry and aT distribution about the
VV principal axis. The correction requires the addition to the solution of the bending about
this principal axis VV. The final deformations are the axial elongation and curvature w' u

about the UU axis solved previously plus the curvature w' v about the VV axis.
Tne final thermal stress is

o= E [—-aT + &' +w"‘r m-~u) + w'u(v-fr)] 1)

Note that any distribution of aT can be solved by superposing the solution into two parts,
each being the solution for the average distribution (Figure 4.1.2.3-2) about that principal
axis, The solution about any axis can be accomplished by the power series or finite sum
method, whichever is most readily solvable.

4,2 STATICALLY INDETERMINATE (EXTERNALLY RESTRAINED) BEAMS

In Sub-section 4.1 it is shown that in externally unrestrained (statically deter-
minate) beams, thermal loads produce deformations and self-equilibrating internal stresses
which are compatible with the internal requirement of the plane cross sections remaining
plane. In externally restrained (statically indeterminate) beams, compatibility forces are
generated at the restraints in order to make the beam deflections satisfy the external (pound-
ary) conditions. These compatibility forces {redundants) and applied mechanical loads
produce stresses and deformations within the beam which are superimposed on the unre-
strained thermal stresses and deformations.

Paragraph 4.2.1 discusses beam deflections which must be known in order to
satisfy compatibility conditions. A knowledge of the deflected shape of a structure is also
important from a design point of view.

Fixed end reactions due to distributed thermal and mechanical loadings are pre-
sented in Paragraph 4.2.2. It is subsequently shown in Paragraph 4.2.3 how distributed
thermal and mechanical loads can be replaced by their equivalent fixed-end reactions at
discrete structural load points, thereby facilitating the application of the methods of influence
and stiffness coefficients to the solution of indeterminate beam problems.

4.2.1 Beam Deflections

Under the assumption of plane cross sections remaining plane after defor-
mations have occurred (internal shear strain energy neglected), the deflections of
a beam subjected to combined thermal and mechanical loading can be determined
from a spanwise integration of the total unit deformations of the cross sections.

The total deformations, which are a function of the distance x along the span

(see Figure 4.2.1-1), are obtained by superimposing the deformations due to
thermal and mechanical loading, i.e.;
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4.1.2.3.4 (Cont'd)

The solution for a symmetrical elastic geometry is illustrated below.

The box beam shown in Figure 4.1.2.3.4-6 is subjected to an oT distribu-
tion which varies through the depth as shown on the right. It is assumed that the aT
distribution is constant across the width, To find the deformations €', w' and the thermal
stresses, it is necessary that the step parameters be calculated from Eq. (1) in Table
4.1.2.3.4~2(a}); the deformation modes as given by Egs. (10) and (13) are calculated in
Table 4.1.2.3.4-2().

Thug, from Eqs. (16) and (17) of Paragraph 4.1.2.3.3,

b ol X 1078 = 1518 x 1078

€' =

I
Me
o

mi
-~
Iy
®
"

73 x 10~

1=0
n
-6
lez (w!)La=z@col.xw
1=0

and from Eq. (18) of Paragraph 4.1.2.3.3.
oc=E [ -aT + (1518x1o'6) + (73x10'6)u ]

Covers: Titanium, E = 15 x 106; Webs: Aluminum, E =10 x 106

4
aT= a; s = 600s* + 600s + 600) 10"

L=0
5011/

6

T T T T T T A T

K

4. 0"

.10
{Typ)

aT = LZ:O a' (-8)" =[900(-s)3 +600] 1078

FIGURE 4.1.2.3.4-6 BI-METALLIC BOX BEAM WITH SYMMETRICAL GEOMETRY
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4.1.2.3.4 (Cont'd)

Anti-Symmetric Temperature Distribution

(NOTE: (vp), = 0)
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FIGURE 4.1.2.3.4-5() CURVATURE (6,), VERSUS WIDTH PARAMETER ()
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4.1.2.3.4 (Cont'd)

Symmetric Temperature Distribution
(NOTE: (6 L)s =0)
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FIGURE 4.1.2.3.4-5(a) ELONGATION (yL)s VERSUS WIDTH PARAMETER (e)

WADD TR 60-517

4.54



4.1.2.3.4 (Cont'd)

FIGURE 4.1.2.3.4~4 APPROXIMATE REPRESENTATION OF A ZEE BY
A TWO RECTANGLE SYMMETRICAL GEOMETRY
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4.1.2.3.4 (Cont'd)

For the symmetrical component of the aT profile, Eqs. (5} and (6) reduce to

&1 _ 2
s = (a; +a' L)/Z - A TLa (10)
6.) = s _, 11
Us ™ @ va )72 - 1)

and for the anti-symmetrical component of the aT profile

-1
€ 1,a

Ve = @ a7z = ° z2)

dw'l
L,a _ 2
@ -2 )2~ g L2 (13)

6 L)a =

Once the deformation modes have been determined,the total deformations and
stresses are obtained by superposition from Egs. (16), (17} and (18) of Paragraph
4.1.2.8.3.

Solutions of Eqs. (10) and (13) are plotted in Figures 4.1.2.3.4-5(a) for the
special case of two rectangles* (sections such as channels, "I'' beams, tees and cruci-
forms conform to this configuration) with 8 = . 87.

* Practically all aireraft structural sections can be approximated by multi-rectangular
configurations with respect to the principal axes. See, for example Figure 4.1.2.3.4-4
in which a zee section is approximated by a symmetrical two rectangle geometry.
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4.1.2.3.4 (Cont'd)

As in the case of continuous elastic geometry, the equations for the section pro-
perties and deformations are simplified if the elastic geometry is symmetric about the

bending axis (see Figure 4.1.2,3.4-3).

Ekb

_ k
& = E.b,
f—— Enbn —
u -
n ED s=1
S5h=d u I-: kX -l u=d
| +8, +u
Sk = d 5 ’
e 171
51 F il e F0 0 o Ref. Axis
v ) | (Bending Axis
A of Symmetry)
=1
-8, -u
S
I- .: s=-I
r-" ______ I_': u=-d
e L,
i EURNIUIVPRVINIVS R A

FIGURE 4.1.2.3.4-3 MULTI-RECTANGULAR SECTION WITH A
BENDING AXIS OF SYMMETRY

In this case,the non-dimensional section properties of Eqs. (2), (3), and (4) reduce to

_ _EA _
Ae =FED. - 2T o
00
- u
s = 74q 0
and
_ __EI _
vs_dsEb I
Q0

@)

@)

)

where the step parameters are determined from Eq. (1) using the geometry on either side
of the reference axis and d is the distance from the reference axis to an extreme fiber.

The solution for the deformations is obtained, as in the case of continuous elastic
geometry, by decomposing the total aT distribution into components which are symmetrical

and anti-symmetrical about the bending axis (see Eqs.
and Figure 4.1.2,3.3-5).
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4.1.2.3.4 {(Cont'd)

The solution for the deformations and stresses of the unrestrained beam shown
in Figure 4.1.2,3.4-2 is illustrated below.

E=10x 10 (Constant)

. 2 60x10

/) ‘ 10.0 = d |
/ 1.0 aT= (13605 +1300s +1300)x 10~
_Meron, oy, ; /
; 1.0 =,
777 177';7} Ref.

' “Axis
—u— 10.0=b —— e
1300 x 10
(a) Cross Section ) oT Profile

FIGURE 4.1, 2.3,4-2 UNRESTRAINED BEAM CROSS SECTION AND
TEMPERATURE DISTRUBITION

(1) The numerical calculation for the necessary step parameters, Eq. (1),
is carried out in Table 4.1.2.3.4-1(a)

(2) Non-dimensional section properties are calculated by substituting the
above step parameters in Eqs. (2), (3) and (4). Thus

r=m, = .2320

Mo . 0950
B = = 330 " -409%

v=m,-Au® = 0728 - .2320 (.4095)° = .0339

(3) The solution of Eqs. (6) and (7) of Paragraph 4.1.2.3.3 and of (5) and (6)
above for the deformations is carried out in Table 4.1.2.3.4~1().

(4) The stresses are determined ¥ Eq. (8) of Paragraph 4.1.2.3.3 by
og=E [-aT + &' +w' (u-
= E [-aT + (2259 x10°%) + @6z 1079 (u_—4.095)]

where i = ud = (.4095) (10.0) = 4.095
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4.1.2.3.4 (Cont'd)

Non-dimensional elastic section properties are expressible in terms of the
step paramefers as

EA

A = = 7 (@)
dE b, 1
i "

- v 2

E=7a 77 @)

v = 2 =m0 @)
d” E b,

Note that the above expressions correspond to Eqs. (1), (2), and (3) of Para-
graph 4.1.2.3.3 for continuous section properties, where

1, B8,

1
@+ ght) s (5 e U TR

have been replaced by s Mo and Mg respectively.

The deformation modes, for an «T profile expressed as a power series

n
aT = Z aLsL , are
1=0
-t
_ €L - nL +1 5)
YL aL A
dw|
- L _ 1 -
oL " Ta, — (Mg -0 oy) ©)

The total stresses and deformations are obtained, as in the case of continuous geometry,
from Egs. (6), (7) and (8) of Paragraph 4.1.2.3.3." If the aT polynomial is higher than

the first order, then to obtain the stresses and deformations, one must evaluate, in addi-
tion to 1y, 7, and My values of 7] up to ‘f)n 9 where n is the order of the aT polynomial.

WADD TR 60-517 4.47



4.1.2.3.4 Solutions For Discontinuous (Multi-Rectangular) Elastic Cross Sections

A wide variety of beams are of the composite or built-up type, fabricated
from extruded shapes, bent-up sheet, flat plates, etc. In most such cases, the elastic
cross section can be considered to consist of a finite number of rectangles as shown in
Figure 4.1.2.3-1(c) where the elastic width Eb varies discontinuously through the depth.

The solution for the deformations and thermal stresses in an unrestrained
beam of this type, for bending about a principal axis, as derived in Reference 4-1, is
presented below. In order to systematize the solution, a step parameter 7 is introduced,

defined as

n
oL _.m .
Mo = m [“2 (e~ ecy) (1~ 5 )} : @
k=1
where, from Flgure 4.1.2.3.4-1,
Ey by
= % b (width parameter)
(e}
k=1,2,. . .n
Uk
B T Td
1 = number of rectangles less one
m = an integer.
- Eb A
— nn e
un
8 =" s=1
n d Ekbk u=d
T“k
sk_T E.b
p—— 1 l_b s, u
5.2 1
- 1‘ d Ref.
- Axis -
. Eob0 )

FIGURE 4.1.2.3.4-1 GENERAL MULTI-RECTANGULAR SECTION
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4,1.2.3.3 (Cont'd)

-2.0
FIGURE 4.1.2.3.3-7 THERMAL STRESSES FOR THE BEAM OF FIGURE4.1.2.3.3-6
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4.1.2.3.3 (Cont'd)
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4.1.2.3.3 (Cont'd)

s=1 ‘ '
R T—— 2
ua=
+8, H1 aT = Z aLsL
d=2"
-3
Re =[ +1 508 + .50] 10
- TT Axis N T2 T
L
" z (_S)
d=2 L=0
‘ -8, u [ .00(-8)2- 1.50(-s) + 50]
s=-1
u=-2
| —»— T

(a) Diamond-Shaped Elastic Cross Section
{Straight Sides) ) T Profile

FIGURE 4.1.2.3.3-6 SYMMETRIC ELASTIC CROSS SECTION WITH
UNSYMMETRIC T PROFILE

(1) From Eqgs. (Lb) and (2) of Paragraph 4.1.2.3.2 or Figure 4.1,2.3.2-2,
g = -1
K = +1

(2) Substituting the above values of g and K in Eqgs. (9) and (11) gives the non-
dimensional section properties

b=z (10 glr) -2 (1-4) -
y -2 (doehs) ma -3 - &

{3) The solutions of Egs. (14), (15a), (16) and (17) for the deformations are worked
out in Table 4.1.2.3.3-2.

(4) The stresses are obtained by substituting the deformations in Eq. (18), thus

q
i}

E (-a¢T + &' + w' 1)

E (aT x 10° + .9583 + .0750 w) x 1072

These stresses are plotted in Figure 4.1.2.3.3-7.
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4.1.2,3.3 (Cont’'d)

For the symmetrical component of the aT profile, Egs. {4) and (5) reduce to

El"L,S 2 ( 1 B )

Vg = =x \V\T71 'X¥L<+1

T 14
(BL*2y ) 5 0

2

((5 ) = ;dwil‘ﬁ._ =0 (15)
L's aL+a'L)
2

and for the anti-symmetrical component of the aT profile

-1
v,) =_€_L:a_.. =0 4
T1)a a, +a' (14a)

(=)

) = dW'L,tsl 2 ( 1 B )
L'a (aL-a'L) v L+2 K+L +2
2

The total deformations are obtained by superposition of the symmetrical and anti-
symmetrical components as

@ =2 F -2 !:(w)(%)s} 4o

(6

{15a)

n n a o
- S S L™ %L
LA IS SR ED) {(.—2—)(%)4 a7
L=o I~o
Note that the elongation, €' is caused solely by the symmetrical component of the «T
profile, while the rotation, w' is caused solely by the anti-symmetric component of the
profile.

Once the deformations have been determined as asbove, the stresses can be obtained
from the relationship

cg=E (-aT + & + w'u) ' (18)
where u and aT are prescribed for the point at which the stress is to determined.
The method of solution is illustrated for an unrestrained beam having the geometry

and o T profile shown in Figure 4. 1. 2.3, 3-6. Stresses and deformations are determined
as follows:
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4.1.2.3.3 (Cont'd)

The relationships for the section properties and deformations given in Egs. (1)
through (5) can be simplified if the elastic geometry is symmetric about the bending axis,
Figure 4.1.2.3.3-5(a). For this case, the non-dimensional section properties reduce to

. _EA _ B
As * GEDb ‘2(1+K+1) ©)
00
a
#sz d = 0 (10)
and
El 1 8
v = —2L - of s ) a1
8 d3E0b0 3 K +3

where d is the distance from the reference axis to an extreme fiber and 8 and K are deter-
mined from Eqgs. (1b) and (2) of Paragraph 4.1.2.3.2 using the elastic width variation on
either side of the reference axis (bending axis of symmetry),

The solution for the deformations is obtained by first decomposing the total
a T distribution, Figure 4.1.2.3.3-5(b), into components which are symmetrical and anti-
symmetrical about the bending axis (Figure 4.1.2.3.3-5(c) and -5(d)).

Thus if, as shown in Figure 4.1.2.3.3-5({), the oT profile above the bending
axis is represented by the polynomial

n
- L _ n
aT = > a;s” = a tas ... .. .. +as (12a)
1=o
and the o T profile below the bending axis by
n
= L = 1 T A n
aT = > a'p (8)" = a' +aly s, . ... . val ), (12b)
I=o
then the symmetrical component of the total aT profile is
n ' 1
a. +al a +a a, +a
L L L _ s] 0 1 1 ) 4. .
(“T)f%q,("_z—_“)(*s’ - [( ) =) e (132)

a_ +a’
+(_J_1_2,,_n_)(is)n]

and the anti-symmetric component is

n a. —a' a -a' a, -a'
@T), =+, (%“ﬂﬁ:i[( 02 0)+(12 1)(is)+"
b 8y "8y n
+(—2——)(:L-s) ] (13b)

where the upper {positive) signs in the above formulas are to be used for points located above
the reference axis and the lower (negative) signs for points below the reference axis.
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4.1.2.3.3 (Cont'd)

3.0

/-ozrxm - 3.082-0.58+ 1.0

aTx10° = 5.333s% - 10.667s° + 9.667s

-1.8338 +1.000

Ref. Axis

-.60 -, 40 -. 20 0 +.20 +,40 +,60

FIGURE 4,1.2, 3,34 THERMAL STRESSES FOR POLYNOMIAL &T DISTRIBUTIONS
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4.1.2.3.3 (Cont'd)

X it is desired to determine the points of maximum tensile and compressive
strains without resorting to a plot through the depth, use of the alternate expression for
the stress, Eq. 8(b) is advantageous. Thus, by substituting into Eq. 8{), the 2nd order
polynomial approximation

2 L 2 -3
eT = 5 a s ' = (3.000s° - 0.5005 +1.000) x 10
L=0
no= 4211

and the values of & L and 7L obtained from Table 4.1.2.3.3-1(a), the following analytic
expression is obtainéd:

< x 103 = -3.000s% + 2.769s - .4157 .

To obtain the extremum points of strain, set the derivative of o/E equal to zero,

i.e.,
d [+ -3

< (—-E—) = (-6.0008 +2.769)x 10> = 0
which gives an extremum point at

s = 2:069 _ a5

6.000 9
d (L)
This corresponds to a point of maximum strain since the second derivative _ZE__ is
ds

negative. Since only one extreme point exists, the minimum (maximum compressive) strain
for the cross section must occur at one of the extreme fibers, as verified by Figure 4.1.2.3.3-4.

Evidently, if E is constant over the cross section, then the points of maximum and
minimum strain correspond to points of maximum and minimum stress.

A comparision of the deformations cbtained from the two polynomial approximations
of the aT distribution (Tables 4.1.2.3.3-1(a) and -2 (b) shows good agreement. This was to be
expected since the o T distributions are integrated in the process of obtaining the deformations,
thus improving the accuracy of lower order polynomial approximations. The stresses, on the
other hand (Figure 4.1.2.3.3-4), do not show as good an agreement. This is due mainly to the
fact that the unrestrained beam thermal stresses are obtained from Eq. (8) as small differences
between large numbers, and are therefore sensitive to small changes in the deformations. Thus
a very accurate determination of the thermal stresses requires an even more accurate calcula-
tion of the deformations, which in turn requires the use of higher order, more accurate, poly-
nomial approximations of the aT profile, or the use of the finite sum method. It becomes
apparent that the temperature distribution must be known to a high degree of accuracy (which is
usually unobtainable in actual structures) to obtain accurate thermal stresses. The ‘high degree
of accuracy of temperature distributions is not required for the determination of thermal de-
formations.
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4.1.2.3.3 (Cont'd)

Solution:

(1) The parameters § and K are determined from Egs. (1b) and {2) of
Paragraph 4.1.2.3.2. Thus '

E b
n n 3
B=——s— -1 ==— -1 = -,7000
Eb, 10
Eb -Eb
= nn 00 - @—10)]
K = 3.32 L°‘*>'10[ E b .-EBb ]‘3'32 'L°g1o[(s ~10)

= 3.32 Log (3.5)=1.8063 .
10

{2) Substituting the above values of g and K in Eqs. (1), (2) and (3) gives the
non-dimengional section properties: -

o B _ -.7000 _
A=1+gg =1+ 3563 ~ 7906
1 /1 1, 1. -.7000 \ _
w=- (5 + %55 ) = 7566 (7 * Thoe3) = 421
(Ll . _B V.5 ,2 (1 , =.7000 y_ 2_
,,_(3 + K+_3) A ( = * T8063 .7506 (.4211)° = 0546

(3) The solutions of Eqs. (4) through (7) for the deformations caused by each of
the polynomial aT distributions, are given below in Tables 4.1.2.3,3-1(a) and -1().

{4) The stresses are obtained by substituting the deformations into Eq. (8).
Thus:

For 2nd order oo T polynomial

o =E [-oz'l‘ + & +w (u-ﬁ)]

E [-aT x 10% +1.5398 +..7563 (u-ﬁ)] x 1073

For 4th order o T polynomial

o=E [-aTx10% +1.4974 + 7580 @-7) | x 107
whered = jpd = (.4211) (3.0) = 1.2633 .

The above stresses are plotted in Figure 4.1.2. 3. 3-4.
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4.1,2,3.3 (Cont'd)

The solution of the stress and deformation for an unrestrained beam, with the
cross section * shown in Figure 4. 1. 2. 3. 3-3, is illustrated below.

It is desired to calculate and compare the deformations and stresses produced by
each of the following polynomial approximations to the aT profile:

@ aTx10%=3.0s2-0.55 +1.0
b) aTx 103 = 5.3335;4 - 10.667s3 + 9.(:‘»6752 -1.833s +1.000 (Refer to
Figure 4.1.2.3-5}

_ 6
Enbn =3x10

E b = 8x 10

>
o
I n
Lo
oo

=]

Ref,

Axis I

Eb = 10){106

FIGURE 4.1.2.3.3-3 ELASTIC CROSS SECTION

* The elastic cross section shown in Figure 4.1.2.3.3-3 makes physical sense in that a
cross section which has a physical geometry of constant width bo has an elastic width Eb
which decreases with increasing temperature.
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4.1,2.3.3 (Cont'd)

aT = aLsL
1.2
L=2
L=3
1.0 _ﬁr-"" _
f""'——’ ...--.----"""" L=1
| et
— =T =
// | ™ L=4
-
// oo ____‘...--_--' _#_' 55
v et -
.8 e o
/ _— —
4 A ol
-
/// =
{17
/ \
.4 H[
.2
0 £-I.J=0
-1,0 -.5 G .5 1.0 1.5 2.0
Enbn
B= 15, !
00 Enbn
10 Typical 10 10
A e
10 Sections EDb 3.3
00

FIGURE 4.1.2.3.3-2 CURVATURE, § L FOR CONTINUOUS GEOMETRY OF THE
FORM Eb = Eobo (1+8 SK), WITH K = 1(STRAIGHT SIDES).

WADD TR 60-517 4.33



4.1.2.3.3 (Cont'd)

L
T =
1.0 @7 TaLs
L=20
.8
.6
L=
"'"-——_
//
54 /’ L=
P B el
rd // L=
f// _—"""'--— L =
0 2 4/ /’— s L=
—
/ g — /’_- ananill
/, '//——'
S
0
-1, 0 -5 0 .5 1.0 1.5 2.0
g = EnPy -1
Eob

E b
nn
A AL (AR WA v
oo Typical Cross Sections

FIGURE 4.1.2.3.3-1 ELONGATION, v, , FOR CONTINUOUS GEOMETRY OF THE FORM
Eb=E b_(1+g sX), WITH K = 1 (STRAIGHT SIDES).
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4.1.2.3.3 (Cont'd)

n n
1
LANCEDYIE £ T > a; 6, . 9
L=o L=o0

The stresses due to thermal loading are determined from the total thermal
deformations by the relationship

g=E {—aT + E' o+ w (u-ﬁ)] (8a)
or alternatively by
n
L
c=E Z aL[ -5 +7L+6L(s-u)] . (8h)
I1~o

The stresses due to mechanical loading are, from Egs. (1) and (3) for the section
properties,

S ul (“'ﬁ)] ; ®e)

where in the above equations, 8, u, E and aT are prescribed for the point at which the stress
is to be determined.
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4.1.2.3.3 Solution for Continuous Elastic Cross Sections

For continuous cross sections having monotonic elastic width variation
(Figure 4.1.2.3. 2-1), the elastic section properties for bending about a principal axis
are obtained by substituting Eq. (la) of Paragraph 4.1.2.3.2 into the general integral
equations for elastic section properties which are presented in Paragraph 4.1.1.1. The
results, derived in Reference 4~1, are given below in non-dimensional form.

- __EA - g
MEgdED  “ltge1 (1)
o0
_u_ _ 1 1 B
b =7 (g wee ) @)
El 1 2
v = —3 = (5 +ghs )M @)
da® E b,

where 3 and K are determined from Egs. (lb) and (2) of Paragraph 4.1.2.3.2. These
"elastic" section properties should be employed in the solution of the deformation and stresses
of beams subjected to mechanical and therma! loads.

The total thermal deformation of the cross section can be considered as the
superposition of the deformations due to the thermal loads represented by each term of
the aT polynomial (Eq. (1), Paragraph 4.1.2.3.1). The contribution of the Lth term of
the T polynomial to the total deformation is obtained by substituting ¢aT = a sL, and
the expressions for the section properties given above, into the general integril equations
for the deformations (Paragraph 4.1.1.2).

Thus, in non-dimensional form, the deformations due to an aT profile of the

form oT = aLsL are
_ - I S | B
vy = ¥/ep = xAgvT ' o1 “)
_ 1 1 8 1 3 ]
= ' = r— -
6y =awp/a; = [(L+2 rxroyz ) Al reTall e

Equations (4) and (5), taken from Reference 4.1, are shown graphically in Figures 4.1.2.3.3-1
and -2 for the case K=1 (elasiic cross section with straight sides). Referring to these graphs,
note that for the case L=0, corresponding to «T constant through the depth, the non-dimensional
elongation v_ and rotation 6 have the numerical values one and zero, respectively, for all
values of taper parameter 8. The case 1=1 corresponds to an T distribution which varies
linearly through the depth and thus 6.=1 for all 8. Note alsc that the deformations are relatively
insensitive to changes in the taper ra]tio for large values of 5.

The total thermal deformations for an o T profile represented by a polynomial of
order '"n'" are, by superposition:

n n
L=0 =

L=0
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4.1,2.3.2 (Cont'd)

B —Jw B=-1 -1< 8<0 8=0 >0

0<K<1

K:l

(Straight
Sides)

K>1

FIGURE 4.1.2,3,2-2 MONOTONIC GEOMETRIC SHAPES DEFINED
BY PARAMETERS 8§ AND K

In many cases, the temperature range is such that the variation of modulus
of elasticity is insignificant. The actual cross sectional geometry then has the same
shape as the elastic geometry, and geometric shapes such as circles, ellipses, etc.,
can be closely approximated by Eq.(1a). Note that the actual shape of the elastic
cross section need not be symmetrical (see Paragraph 4,1, 2.4). Figure 4.1.2.3.2-2
is presented in this manner only to emphasize the shape of the sides.
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4.1.2.3.2 Binomial Representation of Continuous Elastic Cross Sections

Approximate representations of continuous cross sectional geometries having
monotonic elastic width variation (Figure 4.1.2.3.2-1) are given by the following basic

expression:

B r K}; g2 -1% (1a)
Eb = Eobo i_l + Bs :l K2z 0
where 8 = -g—
and Enbn
B=53 -1 (Taper Parameter) (1b)
oo '

The value of K (shape parameter) is determined from the equation
Eb -EDb
nn 00
X = 3.32 Log — . 2
10 l: E b -EDb, ]

-

Reference Axis

FIGURE 4.1.2.3.2-1 CONTINUOUS CROSS SECTION WITH MONOTONIC ELASTIC WIDTH
VARIATION

The taper parameter, B , defines the ratio of the elastic width at the extreme
fiber to the elastic width at the reference axis; the shape parameter, ¥ , defines the shape
of the sides (elastic width variation). Figure 4.1.2.3.2-2 presents a summary of the geo-
metric shapes represented through the complete range of the parameters § and ¥,

* B« -1 gives negative width and is thus meaningless. K < 0 occurs for non-monotonic
width variation and results in infinite width at the reference axis.
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4.1.2.3.1 (Cont'd)

X ol

1.03-
sk
1 3 4 3
aT x 10° = 5, 3338, - 10.667s
. +9.6678° - 1.833s + 1. 000
A aT x 10° = 3.08% - 0.58+ 1,0
2F
@ Fitted Points
ofT x 10°
[ [ ] ’
Y 1 2 3 4 5

FIGURE 4.1.2.3.1-3 POLYNOMIAL aT PROFILES OF ILLUSTRATIVE PROBELEM
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4.1.2.3.1 {(Cont'd)

{ The matrix multiplication indicated above yields the desired column matrix
a} , OF

(=4[] o}
In general the value of each element, a, of{ a} is obtained by selecting the i th row of
{8} and summing the products of its elements with the corresponding elements of the

column {B} .

Thus:
a, x10°= (4) (0.5) + (-1) (2.5) = -0.5
2, x 103 = (-4) (0.5) + (2) (2.5) = 3.0

and therefore

aTx103= 3.0s2—0.5s+ 1.0

For a 5 point fit, Table 4.1.2.3.1-1 gives

aT = a4s4+a333 + 9.232 + a8 + O!OTO
where a T = 1.0x10"3
0 0
and
r 3 r~ 1 - r It
a (16)(-12) (55)(-1)] [ .0
a, (-693) (76 ) (-373) (7x)| | .50
¢ ) x10 . ()
ag (96 ) (-128) ( 749 (-16)] | 1.25
a, (-425) (64 ) (-425 0B | |2 50
L J . 4=
or
a, x10° = (16)(0) + ( -12) (.50) + (53)(1.25) + ( -1) (2.50) = -1.833
a2x103 = (-693) (0) + (76 ) (.50) + (_37%) (1.25) + ( 73 (2.50) = +9.667
agx10° = (96 ) (0) + (-128) (.50) + ( 743) (1.25) + (-16) (2.50) = -10.667
a, x 103 = (422 (0) + (64 )(.50) + (423 (1.25) + (105 (2.50) = +5.333
4 ey P O
Thus

T x 10° = +5.333s% - 10.6678° + 9.6678% _ 1.833s + 1.000

Plots of the oT profiles resulting from the above polynomial representations
are shown in Figure 4.1.2.3.1-3.

WADD TR 60-517 4.25



L18-08 U1 aavam

‘OB R NI XJI1ETT JO POt Jof We[qoxd ApeIIEN[[] 99 .

1P g RE ] o0 T
L | Mg .u:_.- _ Ya mou ) () .mnv-ﬁ L
g e 3 £ g
\ 7%, _-\a—.. € o1 (gpd) (BT ( 96) L5
T 1=3 s (20 Gued (o) oo 2y
yA m‘ra + L (=) ¢ ) ¢ {9 L %, g%+ sfus sfe. s'maim »
TR ™ ! -4 1- Y z21-) oﬁn ® ), L 0+ 8% + «n + g S
2
B,y (& z,
10 _ a) |3 Gersd m.au Gy
! #E | 0 Vi | 2 2
¢/zms Tz () (qEe-H- Ty
J
_ g
3% uMua Y J(w) Fr) Ce W Te Jo %1% + atu + mnm. + n-nu...n.a £
I T0d ¥ 8% Ve
gl [z +]_ )%
12 " emy jew lwm..ﬁl%r- .—_n 2 -+ Lof, %1% + ol + Nunulhu 3
1
3.2
T TN § o I .
.-.ou L.r._al*n [T
Lo —=
sy jey 0,0 t
, o I=8 Tga® - Tl =Te %+ alv=1m 1
{uoTywrIw, Jweury) - < .L
WL Inod ¢ 't'o s
i %% |
1% e e ' ° 0
[=0 S IRVIENOD = L 0 = LD 0
{*ywuop J.0) 1 1
T AEred 1 . =
ALNFIOIAITOD (o 2= TYINONATOd
L& 40 AL HOJ NOILVASE XTELVH 10 UOL NOLYADE 40 ¥IqHO

ROLLNGIELSId (1%) NIVHLS TYAEAAL A0 SLNIIDIZ3d00
T-1°¢°2°1'y F'TEVL

{pamed) T°8°2°1T°¥




4.1.2.3.1 (Cont'd)

Obviously, as more and more subdivisions are taken, higher order polynomials are
obtained which more accurately match the correct temperature profile. However, the addi-
tional work and time expended in obtaining high order, extremely accurate, polynomial repre-
sentations ig seldom justified. Since the temperature distribution is to be integrated in the
process of obtaining the solution, the accuracy of the approximation using a low order poly-
nomial is improved. Also,an exact representation of the temperature profile may become
meaningless if the available data from which the profile is constructed is scant and inaccurate
{as is often the case). In most cases, solutions uf engineering accuracy can be obtained
with polynomials no higher than the 4th order (which matches oT at the extreme fiber, at the
reference axis and 3 intermediate equally spaced points). The matrix solutions for the co-
efficients, presented in Eq. (2) in general form, are given in Table 4.1.2.3.1-1 for polynomials
up to the 4th order.

The order of polynomial to be used in any given problem should be determined on
the basis of factors such as the completeness of available data, the shape of the temperature
profile, and the desired degree of accuracy. The coefficients of polynomials higher than the
4th order can be determined from Eq. (2).

The method of polynominal approximation of the aT profile is illustrated below
for the case where the values of «T are given at five equally spaced points, as shown in
Figure 4.1. 2.3, 1-2, The following will be determined:

(1) The polynomial which fits the 3 points (@ , (2) and @

(2) The polynomial which fits all 5 points

@ - 3.50 7. o

@ —et2:25 % 1 o1

@ —=—L80 o=3/4
s=1/2

1.00
—-—+—r
@ g=1/4 |

@ - 1'0% L Ai'ifs » T X 1(’.}3

FIGURE4.1.2.3.1-2 aT VALUES AT 5 EQUALLY SPACED POINTS

For a 3 point fit, Table 4.1.2.3.1-1 gives

L 2
aT=z a.,8 = a8 + a,8 + a T
o L 2 1 o0
where _3
oono = 1.0 x 10
and
a 4 -1 1.5 - 1.0 4 -1 0.5
1 3
x 10" = =
a, -4 2 3.5 - 1.0 -4 2 2.5
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4.1.2.3.1 Polynomial Approximation of a Given T Distribution

Consider the temperature {aT) profile shown in Figure 4.1.2.3.1-1, which
represents the average variation in the direction of one of the principal axes.

S*“A a T

nn

s=1 a, T

g=d f 173

8 = j/m
T
) T
B = 1/n % "o Reference Axis
aT
FIGURE 4.1.2.3.1~-1 oT PROFILE
It is desired to determine a polynomial expression of the form
n
N n n-1 _ L

aT = a 8 +a .8 e e o raBra TS 2 a s 1)

L=o

where s = u/d, which will match the profile values of aT at discrete points equally spaced
through the depth. The solution consigts of solving n linear algebraic equations for the n
unknown coefficients 2 , a  , . . . a,, where n is numerically equal to the number of
equal subdivisions of the profile. In matrix form, the coefficients are determined from the
equation:

B 2 j ny !
(31 h (%) ("1_) (%) ,%) B
2 j . n
S O I L TR EE L
' ) L2 L Lo )
(% »= & & ) (B F(z)
_ 1y 2 _ j _ n
w| |55 (55 (5= - (5 By
L% ) | D 4y ) 1) ]| B
where Bj = (on.Tj -a,T). 3)
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4.1.2.3 (Cont'd)

! d '
Eb . .
| / oo 1 Be’ndmg Axis d
| Ref. / dof Symmetry

b
=
_—f

I
o
u_1i

Axis
. Ref, I 1 —
oo __.I Axis
Enbn L— EObO —-I
(#) Monotonically Continuous (b) Elastic Widths Monotoniecally (¢} Multi-rectangular Dis-
Elastic Width Variation Continuous and Symmetrical continuous Elastic Width
About the Bending Axis Variation

FIGURE 4.1.2.3-1 TYPICAL CONFIGURATIONS OF ELASTIC CROSS SECTION AREAS

Discontinuous multi-rectangular configurations are expressed by means of step
parameters 7 defined in Eq. (1) of Paragraph 4.1.2.3.4.

(c) The parameters which define the T distribution and elastic cross section in
the above manner are substituted into non-dimensional expressions for the stresses and
deformations.

u
l b+ u
f EaT(u,v) dv |
b-
(xT) = .
i b+ (aT)i
du ‘avg f E(y,,v) dv’ avg
EnaEEEE—
b~ —
T A 1
018} K—' b- b+ uj u;
—— v = aT
. % E, and T are Functions
> of uand v
(a) Cross Section With Two Dimensional (b) One Dimensional Average o T Profile
Distributionof E,a , T in u Principal Direction,

FIGURE 4.1.2.3-2 DETERMINATION OF AVERAGE oT PROFILE FOR BENDING
ABOUT UU PRINCIPAL AXIS
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4.1.2.2 Cont'd)

Note that no thermal stresses occur in the faces, Eq. (4). In fact, no thermal
stresses can occur in an unrestrained beam when the cross section consists of less than four
concentrated areas because, for two or three such areas, a plane can always be passed
through the thermally deformed section. :

4.1.2 3 Power Series Solution - Bending About One Principal Axis

The power series method gives a non-dimensional solution to the unrestrained
thermo-elastic beam problem in terms of non-dimensional parameters which define the thermal
loads and section properties.

This paragraph discusses the application of the power series method to problems
in which the directions of the principal axes are known and bending occurs about only one of
these axes (as, for example, when one of the principal axes is an axis of symmetry for both
the elastic area of the cross section and the oT distribution). Under such conditions, the
power series method usually has a distinct advantage over the finite sum method.

The method can be extended easily to the general case of bending about both prin-
cipal axes (Paragraph 4.1 2.4). However, because of the additional numerical computation
required, expecially when the directions of the principal axes must first be determined, the
method of finite sum should be used in problems invelving bendmg about both axes so as to
obtain solutions with the least amount of labor.

Paragraph 4 1.1 1 shows that, in general, the modulus of elasticity, E, varies
over the cross section and thus appears under the integral sign in the formulas for the section
properties. Accordingly, the structural behavior is governed by the elastic properties of the
cross section (EA, EI), rather than by the geometric properties of the cross section (A, ).

The power series method will be applied to beams having the following types of
elastic cross section configurations:

(a) Cross sections where the elastic width (Eb) is monotonically continuous
through the depth or on each side of a bending axis of symmetry (Figure 4.1.2.3-1(a) and

-1®)).

{b) Cross sections with discontinuous elastic width variation of the multi-rect-
angular type as exemplified by tees, channels, I-beams, etc. (Figure 4.1.3-1{c)). Cross
sections that do not have the above configurations can usually be approximated by them with
a reasonable degree of accuracy.

The following steps are taken in arriving at the solution:

(a) The average o T profile (Figure 4.1.2.3-2 and Paragraph 4.1.2.4) in a direc-
tion normal to the principal bending axis is approximated by a power series (polynomial) of the

form 1

aT = aLsL= ansn ta sl A (1)
L=o0

(b) Continuous cross sectional configurations of the types discussed above are
represented by binomials of the form
K
Eb = Eobo 1+8s) 2)

where g and K are non-dimensional parameters defining the elastic width variation.
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4.1.2.2 Geometry of Concentrated Elastic Areas - Sandwich Beam

The finite sum method (described in paragraph 4. 1. 2. 1) reduces the continuous
cross section into a number of discrete elements, such that each element is considered to
be a concentrated point of elastic area (EA), and free thermal strain {(a¢T). This approxi-
mation is especially applicable to beam cross sections made up of localized, high area
flanges (or caps) and thin shear webs. In beams of this type, the deformationsg of the cross
section and thermal stresses in the caps can usually be determined with sufficient accuracy
(especially if peak femperatures occur in the caps) by neglecting the web material, thus
considerably reducing the amount of calculation.

_ As an example, consider the sandwich beam cross section shown in Fig. 4.1.2.2-1,
It is assumed that E, «, and T are constant in each face, the face thickness is small com-
pared to the depth of the cross section, and the core carries only shear. Thus the cross
section is symmetrical about the y axis and the faces can be considered as concentrations
of elastic area (EA) and free thermal strain (o¢T).

EA ,a T

f R R
-~
Wy
N L CORE FACES
W/ 1/
E2A2,012T2

FIGURE 4.1.2.2-1 SANDWICH BEAM CROSS SECTION

The formulas at the bottom of Table 4. 1.2, 1-3 are directly applicable. They yield

_ E.A
EA +ENA,

EAa T + EA o T

= 1y T 2afae 2)
EjA; + EpAy
T, - a,T
w_ = %111 272
z 5 (3)
01=0'2=0 (4)
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4.1.2.1 (Cont'd)
MECHANICAL LOADS

M-- = 10,000 inch pounds
5y po
2.0 Miz O
ratif— . —e————
F = 10,000 pounds
1.0 e
{ o nata
.30 [d @ c THERMAL LOADS
f d" 1 Element Mean Temp. E/l()6 a(106)
—ad L .20
) 1 1000°F 20.0 6,60
] 2 950 21,1  6.53
1 3 850 23.3  6.35
.80 (6 4 770 24,7  6.23
40‘ 5 700 25,8 6,03
' * 6 650 2.5  5.88
.80 [5) 7 700 25.8  6.03
‘ 8 800 24.2  6.25
} 9 900 22,2 6,44
.80 B
i t—b—
.80 Es)
! 4 ® @ = |
4 1 ’\
: /E,/ au\ *
b l-.75 a
.10
- B

FIGURE 4.1.2.1-2 FINITE SUM METHOD
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5.1.2 (Cont'd)

The solution for the attachment loads in a joint is illustrated by the following problem.
A titanium plate and an aluminum plate are bolted together with six attachments as shown in
Figure 5. 1. 2-2(a). Find the attachment loads when the titanium and aluminum plates are
subjected to uniform temperature rises of 300°F and 70°F, respectively, and a mechanical
load X of 20,000 pounds is applied to the joint,

It is assumed that the bolt hole flexibility has been determined experimentally to be

6

f=.900x10  inflb  (See Sub-section 5. 3).

Considering the titanium plate to be the top plate, the plate flexibilities are:

(-—l—) = 1 = .356 x 10°° in/ib,

AE /. (1.5)(. 125)(15)x13

( L ) = L 5 = .267x10° inflb .
AE /g (1.5)(. 250)(10)x 10

Since the temperature rise in each sheet is uniform, the incompatibility due to unrestrained
thermal expansion in each bay is given by

Ad [(aAT}T - (aAT)B] L

€

[6.5(300)— 12(70)] (1) x 10~

1110 x 107% inch.

The above quantities are now substituted into Eq. (2) resulting in

. 356 1110
Pin [AjN + By (Tﬁﬁﬁ) ] (20,000) + By o (.900)

or
PjN = 20,000 AjN + 913§ BjN . ()
The coefficients AjN and BjN .re now determined from Figurez 5.1, 2-1 for
0 I B e (1) = (356 +.267) | —==x) = .692
AE AE f . 900
T B
and N = 6,
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AT = 300°F
Le1iN. E=I15x10% LB/IN2
";I a=65x10"¢ IN/IN-°F
20,000 LBS, an o on o Aom oom b '
— ; | 125 IN.
250 IN | Ti a ! ! . F]X*20,000 LBS.
R | | | .
iy 184D 8
OO 0@ @ @ A
AT = T0°F

E=I0XJO® LB/IN2
@ = 12X10°8 IN/IN-°F

/ I/4 IN. DIA. STEEL BOLTS

(b6 b b o]

P s e e —— -

(a)
i
£0:000 'LOAD IN TOP PLATE
12,410 .
9,010 (b)
7,210
5,820
3,840
20,000 A Fa s %h
DE— [ ] )1
T e e e W X

7590 3400 1800 I390 1980 4030

BOLT LOADS

75
(c)

3400 4030

IB?O 1390 IQIBO

FIGURE 5.1.2-2 JOINT WITH CONSTANT BAY PROPERTIES
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. 0140 Figure 5. 1. 2-1(a)

A16 ~N
Ay, = .0239 -1(c)

Age = .0500 -1(e)

Ag = -1090 -1(g)

A, = .2450 -1(1)

36 @
B, = .8000 Figure 5. 1. 2-1(b)

By = 3200 ~1(d)

By = .0880 -1(f)

By, = - 0860 -1(h) _/
Bgs =-.3200 -1()

The curves give values of AjN and BjN up to j =5 and the splice under consideration

has 6 attachments, In order to obtain the coefficients for the last attachment, the designation

of the top and bottom plates as shown in Figure 5.1, 2-3 must be interchanged such that the
last attachment (j = 6) in the original designation becomes the first attachment (j = 1) in the
interchanged designation.

Denoting gquantities in the interchanged designation by primes, results in

Bottom Sheet

/Top Sheet

\

L
- 7 SR I i X
C - {L | | =
DO OO EE
(&) Original Designation
Top Sheet
/Bottom Sheet
X , -
- | r 1
[ ol ] X -

POOO® OO

(b) Interchanged Designation
FIGURE 5.1.2-3 ALTERNATE TOP AND BOTTOM SHEET DESIGNATION
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£ =f=.900x10"% in/b
AE | . AE /
-6,
.356 x 10”8 in/1b

(%), ~(3); .

Ap' = -Ad = -1110 x 1075 in

|
"

267 x 1078 in/lb

Z' =Z =,692

and from Eq. (2),
. 267

- ' ' ' ¢ _
Pin = [A Nt B jN(.900)B jN] (20,000) - BY ¢ (

Pin

L] Q1 Rt
20,000 A iN + 4693 B iN

As in expressions {4) .

1 -
A 16 AIG

[ ] _
B'6 = Bis

From (3) ana (4) ,

13

. 0140

]

. 8000

P 20,0600 (. 0140)

+

9135 (.8000)

16
P, = 20,000 (.0239) + 3135 (.3200)
Pye = 20,000 (.0500- + 9135 (.0880)
Py = 20,000 (.1090) +
P = 20,000 (.2450) +

and from (5 )anld (6 ).

P..=P'_ . =20,000( 0140) + 4693 {, 8000) = 4030 lbs.

66 16
Equilibrium Check

N
z pj = 20,190 lbs~~20, 000 1bs
i=1

190 x {100} _

%  difference = 20,000
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7590 lbs

3400 lbs

1l

It

1860 1bs

9135 (-.0860)= 1390 lbs

9135 (-.3200)= 1980 lbs,
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5.1.2 (Cont'd)

The load in the top plate and the attachment loads are plotted in Figures 5. 1. 2-2(b)
and (¢). The results show that the maximum load occurs in the first attachment and that
the two end attachments carry more than half of the total applied mechanical load, When
the bay properties are constant the maximum load always occurs in an end attachment,
However, as discussed in Paragraph 5. 1, 3, when plastic deformations occur in the vicinity
of the boit holes, the bolts tend to carry equal loads,

5.1.3 Constant Bay Properties — Rigid Sheets

Now the case is considered in which the sheets have negligible axial deformation
as ccmpared to the deformations caused by local distortions of the holes and attachments

{rigid sheets).

From a practical point of view, this condition is realized when the plates are thick
and the attachments have small diameters -~ or, when local ylelding causes the effective
attachment-hole flexibility factor to become large as compared to the axial flexibility of
the sheets,

In the limiting case,

(—'ﬁ—) —=0 and(—i—) —~0
AE /. AE /4

and the compatibility Eq. (1) of Paragraph 5. 1. 2 reduces to

- _4A9¢
I:,j+1 pj f

+T, in terms of the first attachment load .

P, = P - (-1) L2 (1)

P1 is obtained by summing Eq. (1} over the total number of attachments:

N N
—21 P =X=NP, - £ 3 ¢

i i=1

A
=np, - Y-St

1
or
P = % * @ ‘Afi . (2)
Substituting (2 } in (1 ) results in

Equaticn (3 ) gives the attachment loads for a given thermal and mechanical loading and a
known value of attachment-hole flexibility, f .

WADD TR 60-517 5.24



5.1.3 (Cont'd)

The solution shows that for the case of constant bay properties and infinitely rigid
sheets, the mechanical load distributes equally to the attachments while attachment loads
due to thermal effects vary symmetrically about the transverse centerline of the joint with
magnitudes inversely proportional to the attachment-hole flexibility (Figure 5.1.3.2).

For high loads which cause extensive plastic deformation in the vicinity of the attach-
ment holes, the effective attachment-hole flexibility may become large as compared to the
sheet flexibility, in which case the solution of Eq. (3) is approached. If these plastic effects
become large enough, the increase in f tends to wipe out the effects of thermal loading with
the result that:

X
P.1 N
This indicates that near the failure of ductile materials, the mechanical load tends to
distribute equally to the attachments regardless of temperature distribution. The
effect of an infinite sheet rigidity for the splice of Figure 5.1.2-2{a) upon attachment
loads may be calculated where, as before in Paragraph 5.1. 2,

X = 20,000 Ibs

f = .900x 107 /b
Ag = 1110 x 1075 .

N =6

However,

(3%), - (), -

Substituting the above in Eq. (3 ),

_ 20,000 8+1 _ .} 1110
Py = % +( 3 ) 900
or
P, = 3,333+ (3.5- j)1233 .
Thus:
P1 = 3,333 + (3.5-1) 1,233 = 6,420 lbs
P2 = 3,333 + (3.5-2) 1,233 = 5,180 lbz
P3 = 3,333 + (3.5-3) 1,233 = 3,950 1lbs
P4 = 3,333 + (3.5-4) 1,233 = 2,720 lbs
P5 = 3,333 + (3.5-5) 1,233 = 1,4801bs
PG = 3,333 + (3.5-6) 1,233 = 250 lbs
and 6
Z p - i
o ] 20, 000 lbs
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The results are plotted in Figure 5.1, 3-1. It is seen that the attachment loads vary
linearly with the distance along the splice. A comparison with the flexible sheet results of
Figure 5. 1. 2-2 shows that the attachment loads in the rigid sheet solution drop off constantly
as one proceeds from the first to the last attachment, while in the flexible sheet solution the
attachment loads are minimum at the center of the splice and build up toward the ends.

Load In Top Plate

20, 000

1,730 250

it 7
3 (4) 5 |[@]

6,420 5,180 3,950 2,720 1,480 252

20,000
gPr—

Plot of Bolt Loads

6,420 5,180 3,950 , 199

1,48
L I | 1 1

250

FIGURE 5.1.3-1 RIGID SHEET SOLUTION
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Qualitatively, the difference in the resuits is due primarily to the effect of thermal
loading (Figure 5.1.3-2) which becomes more severe as the sheet rigidities increase.

S
The Attachment Loads
Are Symmetrical About
LCi . The Line Of Symmetry
T~
¢/ﬁ 8-S and P >P,,.
- - -— -—
P, Py P00 PP, BgRPy

FIGURE 5.1.3-2 ATTACHMENT LOADS DUE TO THERMAL LOADING WHEN
THE JOINT HAS CONSTANT BAY PROPERITIES
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5.1.4 Constant Bay Properties - Rigid Attachments

The attachments may be considered rigid if the attachment-hole flexibility is
negligible when compared to the axial flexibility of the sheets as, for example, when the
sheets consist of flexible (soft) materials and the attachments are housed in large Jlia-
meter rigid bushings. Although this situation seldom occurs in practice, the problem is
of interest from a qualitative point of view, since it represents another limiting case of
the general cne-dimensicnal problem. In the limiting case, f ~— 0 and the compati-
bility Eg. (1) of Paragraph 5.1.2 yields

()
_ : AE /¢

P, =
1 ( i +(f__ (1)
AE )T AE)B :

Thus, from the equilibrium equation,

X(L:) -Ag
AE /p

N 1 (L . L @)
AElr (AE)B

The above equations show that for infinitely rigid pins and constant bay properties, the
two end attachments carry all the thermal and mechanical loads.

When the upper and lower sheets are each heated to lifferent uniform temperatures,

then
Ad= -(aAT)T—(aAT)B]L
so that
X + (AE AT).,, - (@AT ]
. (AE) |(eAT), - (@AT), o
1 (AE)
LT aey,

an.d the interme:diate attachment loads are all zero.
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The effect of infinitely rigid attachments for the splice of Figure 5.1.2-2(a) upon the
attachment loads may be calculated where, as before in Paragraph 5.1.2,

X = 20,000 lbs.

L -6
AEe = -356 x 10 in/lb
(AE),,

"(ALT)= .267 x 10~ in/1b
B

L [(aAT)T - (aAT)B] = 1110 x 107€ inch
but f=0
Substituting .the above quantities in Eq. (3) gives
20,000 + { 32— ) (t110)

P1 = 1 - 267 = 13,200 lbs.
.356

For rigid attachments as stated above,

and for equilibrium

PG = 20,000-13,200 = 6,800 Ibs.
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5.1.5 The Influence of "Slop" on the Load Distribution

The presence of "slop", due to manufacturing tolerance and differential thermal
expansions between the plate holes and attachments, affects load distribution through the
basic joint compatibility equation.

The "slop" at each attachment is indicated by the difference in diameters of the
plate hole and attachment (Figure 5.1.5-1), as expressed by

e= emfg + etemp; e>0 (i.e., e must always be a clearance),
where
€ e = {nitial Toom temperature manufacturing tolerance (clearance or interfer-
ence. Interference has negative sign.)
and

€ omp - thermal slop (clearance or interference due to differential thermal
expansion between plate holes and attachments})

= EaT)sheet '(QT)attach.] Dyole

FIGURE 5.1,5-1
FIGURE 5.1.5-1 ATTACHMENT IN AN OVERSIZE HOLE

As discussed in Paragraph 5. 1. L, the joint displacements (for compatibility purposes)
have been measured from a datum defined by the initial spacing between the centerlines
of adjacent attachments, When slop is present, and thermal and mechanical loads are
applied to the joint, the attachments are displaced from the centers of the holes until
they bear up against sheet material, as shown in Figure 5. 1.5-2,
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L+ g

e L ‘ I.-
—'! "’\—ejr/2 — e(j"'l)T/z

- L~
— Y T —

— YT A i —
< L e,

Ly +6jp ———=

FIGURE 5.1.5-2 ATTACHMENT DISPLACEMENTS DUE TO SLOP - POSITIVE LOADS

The algebraic sign of the slop displacements depends on the direction of the joint
loads, For the top sheet, the displacement between adjacent attachments is given by

s - T 5 Sgeyr Pia
iT 2 P 2 P,
! , jl J+1l
and for the bottom sheet, by
P S T 51 M 1S T
) K L

where a positive § increases the spacing between adjacent attachments and

'-g! = + 1 for a positive attachment load,
P = -1 for a negative attachment load,
18
The incompatibility due to slop is therefore given by
1 P'+1 1 [_).l.
.= - = - + . - = (e + e ) (1)
A&J ajT 5113 3 (eT eg) j+1 |pj+1| 2 Y17 "B’ |Pj|
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Equation (1) is significant in that it brings out the very nature of tht? slop problem.
Consider, for example, that the slop is the same at all attachments. In this case, Eq. (1)

reduces to
VSR SN i T W B 2
R N TR LT

As the mechanieal loads applied to the joint increase, zll the attachment loads tend to act in
the same direction (opposite to the externally applied load) or,

_E,ji :._;j_ - il.
| Pyl i |

The bracketed quantity in Eq. (2) thus becomes zero and therefore

a6y =0 . 3)

Since the A4 ;'s determine the influence of slop on the load distribution, Eq. (3} in-
dicatea that for high joint loadings the effects of uniform slop are eliminated. To solve for
the load distribution with slop, the basic one-dimensional compatibility expression. Eq. (5)
of Paragraph 5.1.1, must be modified by the addition of A§.. The compatibility equations
then become ]

i

(-é—) +( L ) P [=(A¢. +A8)- Pf +P _f +x(—L ) @)
p— ~— > B 3 A0 B B Ty X
AE /i \AE [l & AE /,

The above equation, together with the equilibr'ium equation

N
X = z b, )
=1 ]

provides N equations for the N required attachment loads, Pj . The solution of these equa-

tions, however, involves more than simply solving a set of simultaneous algebraic equations.
The values of A(Sj on the right side of ‘Eq. (4) are given by (1) from which, in order to determine

the Aéj‘s, the sign of the attachment loads (positive or negative) must be determined. But this

is not known in advance. This presents one of the major difficulties of the slop problem. The
suggested method of attack is as follows:

(1} Assume a set of directions for the attachment loads.

{2) Determine the A i' s from Eq. (1) and solve the simultaneous compatibility and
equilibrium equations (Eq. (1) of Paragraph 5. 1. 1 and Eq. (4) above).
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(3) If the directions of the attachment loads as obtained from the solution agree
with the initially assumed directions, the solution is correct.

{(4) I the directions of the attachment loads as obtained from the solution do do not
agree with the initially assumed directions, the solution is incorrect. The procedure
must be repeated with a new set of attachment load directions, preferably the ones
obtained from the solution.

The solution is the correct one when the assumed set of attachment load directions
yields a solution with the same set of directions,

Obviously, a digital computer program is desirable in solving problems of this sort.

The following example illustrates the method of solution,

Scarfed steel and aluminum plates are bolted together with three attachments as shown
in Figure 5.1,5-3. Find the attachment loads when the steel and aluminum plates are subjected
to uniform temperature rises of 640°F and 80°F, respectively, and a mechanical load of
X = 5000 lbs, is applied to the joint. The manufacturing tolerance is to be taken as e mig = 0003

inch for all holes. It is assumed that the bolt-hole flexibilities have been determined experi-
mentally to bhe:

1. 300 x. 1678 in/lb

f. = ‘ |
1

f 5 =L 200 x 10‘6 in/lb  (Refer to Sub-section 5. 3 for a discussion of bolt-hole

f, =1.300 x 108 in/1p,  exibility)

The appropriate qua.ntines for substitution in Eq. @4) are first determined.
Using average thicknesses for each bay,

(ﬁ) = L. 25 g = .119x10% in/b
(- 175)(2)(30) x 10

1.25

- -6 .
(.125)(2)(30) x 106  ~ .167 x 10 " in/lb

L =
AE /,n
1,25

(36)
( Ali-:) = . = .278 x 10°% inf1b
(@),

5
{. 225)(2)(10) x 10

- 1.25 = = .227x10" in/lb.
(- 275)(2)(10) x 10

L
AE
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Steel
AT = 640°F
5" . 1 l 6 2
E Dia. Steel Bolts E - 30x10° 1b/in
_ -6 . -
/0‘ = 6. 0x10 im_°F / o« =6.5x10 = in/in/°F
n, -
o an m
5000 1b 200 | ' -T0U
i [ X = 5000 1bs
v, 200 : ' . 300 —
+ | 4 .
I l.l+U 1]
| Aluminum
—- 1.25 in. _+— 1.25in__)} AT = 80°F

©) @ ® £ = 10x10% 1b/in>

@ - 12x10°8 in/in/°F

|

T3

FIGURE 5.1.5-3 SCARFED SPLICE

Since the temperature rise in each bay is uniform, the incompatibilities due to unrestrained
thermal expansion are given by

b, = Ag, [(aAT)T - (aAT)B] L

[(6.5)(640) -Qa. 0)(80)] x1.25 x10°°

]

4000 x 10°8 inch |
Assuming the temperature of each bolt tc be the same as the surrounding sheet
material, the slops due tc temperature are given by

Ftemp] top = [(aT)top sheet (aT)top of attach. ] Dhole
[(6.5)(640) - (6. O)(B40)] X .3125 x 10°°

100 x 10™® inch .
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[etemp] bottom [(QT)bottom sheet ~ (aT)bottom of attach,] I)hole
[(12. 0)(80) - (6. 0) (30)] x .3125 x 1078
150 x 107% inch.

Since e, = 300 x 1078 in. , the total slops are given by

€1 %21 < %37 ° [emfg * etemp ] top
= [300+100] x107®
= 400 x 10" inch.
B “%pB "%B " [emfg * etemp] bottom

300 + 150) x 10~8
= 450 x 1078 inch.

The Incompatibilities due to slop, Eq. (1), are thus
As, = L (400 + 450) %2 1 (400 + 450) !
12 [P,] 2 2y

P, P
2 P
425(— )
Pl [Py
P p
3 2
- 425(— - ——) .
2 |Pal [P

Substituting the known quantities in the incompatibility Eq. (4 ) and collecting terms yields
the following expressions:

Ad

F‘2 P1
1,697 Pl - 1.200 Pz = 4595 + 425 lFl - IFl {a)
2 1
/ P P2
394]? +1594P -1300P = 4835 + 425 o)
2
\ Pal |P
and for equilibrium,
Pl + P2 + P3 = 5000 - {e}

Expressions (a), {(b) and (¢ } provide 3 simultaneous equations which can be solved for the
attachment loads Pl' P2 and P3, provided their directions are assumed correctly.

For a first trial, assume that all the attachment loads are positive. In this case the
slop terms (2nd terms on the right in (a ) and (b)) vanish and the expressions reduce to
1.697 Pl -1.200 l:"2 = 4595
. 394 Pl + 1.594 P,2 - 1.300 F'3 = 4835

P +F’2 + P, = 5000,

1 3
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5.1.5 (Cont'd)

for which the solution is

P, =+ 3880 Ibs
P, =+ 1650 lbs )
P, =- 5301bs.

The above solution would be correct if no slop were present. However, since joint
slop is present, the solution contradicts the initial assumption that the bolt loads are all
positive and it is therefore incorrect. As a second trial, assume that the directions of
the attachment loads are as given by the first solution, namely, that the loads in the first
two bolts are positive while the load in the last bolt is negative. Expressions (a) and (b)

" then become
1.697 Pl - 1.200 P2 = 4595

. 394 P1 +1.5%4 P, -1.300 P3 = 3985 ,

2
and as before,
P1+ P2+ P3 = 5000 ,

for which the solution is

P, = 3730 lbs
P, = 1440 lbs ©)
P, =-170 lbs.

This is the correct solution, since the directions of the bolt loads are in agreement with the
initial assumption,

Expressions (d) and (e) show that there is not much disagreement between the solutions

with and without slop. This was to be expected, since the slop for the joint under consideration
is small,

5.2 THE TWO-DIMENSIONAL (BOWING) PROBLEM

When the boundary conditions are such that the joint is allowed to bow out of its own
plane, the sclution is much more complicateld than in the one-dimensional case. Additional
factors such as rotational and out-of-plane displacements, beam-colunm effects, moments
at the attachments, ete., enter into the problem. The present state of the art makes an exact
analytical solution t- the prcblem impracticable,

The purpose of the analysis presented here is to cbtain a first approxination to the
solution of the two-dimensional (bowing) preblem by medifying tne equations of the one-
dimensional (uniaxial) solution.

A Jetailed ierivation of the solution is presented in Reference 5-1.
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5.2.1 The Joint Equations

Rowing < f the joint (Figure 5. 2. 1-1) cccurs Jue to the conibined effects of
non-uniform ten:perature distribution and externally applied mechanical loading.

The sclution presented gives the shear loads in the attachments for a known
set ~f applied mechanical and thermal loads where the following simplifying assumptions
are made:

(1) The bay properties are constant (sheet thicknesses, attachment size and
spacing, ctiffnessess, etc., are the same for each bay). The thermal loading is assumed
n=t to vary in the longitudinal direction, but may vary through the thickness.

(2) Vertical out-of-plane deflections and clamping loads are assumed {o have a
negligible effect on the load distribution (negligible beam column effects).

(3) Mom.en s at the attachments have a negligible effect on, or are included in,
the attachment-hole flexibility.

(4) The contact faces of the top and bottom plates of the joint are initially plane;
the external axial loading is appliel parallel to this plane in the direction of the line of attach-
ments,

(5) As in the one-dimensional case, the joint materials are assumed to deform
elastically under load. :

lastic Axis f Plate

y ' _
B X@ptypg-M

S 1 e e Y SO NI
Yt ! i A !
j-1 j j+1 N

»

|...
B
)
)

3

b)

FIGURE 5.2.1-1: (a) JOINT IN UNBOWED CONFIGURATION
{b) BOWING OF JOINT DUE TO COMBINED EFFECTS
OF NON-UNIFORM TEMPERATURE DISTRIBUTION
AND MECHANICAL LOADING
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5.2,1 (Cont'd)

Under the above assumptions the requirement of compatibility at the attachments
yields the following compatibility equations:

i _ 3
fA iz=1 pi = A —ij * l:’j+1f+ XfAT ¢g=1,2,...N1), MO
where 2
Lyy +¥g)
f, = (:L_—) R (*.}:) R o
AE [y AE /4 (D, + (ED)y
—— (ED, w + (ED,, w
A¢p = A¢p- L [_T T _B B] Vg + V) o
(ED), + (EDg
(¥ tyg)
o) ()]
AE/T EDp + EDy

and w is the curvature due to temperature (Paragraph 4. 1.1). If the thermal gradient is

linear through the thickness, then w approximately equals AT where ATIis the linear
h h

thermal gradient through the plate thickness (positive for higher temperatures on the upper

face of the plate),

Equatlorh (1) together with the equilibrium equation

X=92 P

=

provides N simultaneous equations for the determination of the N unknown attachment
shears. ' '

A comparison of Eq. (1) with the one-dimensional compatibility equation, Eq. (1) of
Paragraph 5.1.2, shows that the two forms are identical. Thus, when the bay properties
are constant, the procedure for the two-dimensional solution is exactly the same as for the
one-dimensional case if the one-dimensional coefficients

() ()] - ), ]

T T
are replaced by the expressions on the right side of Egs. (2), (3) and (4), respectively.

Coefficients AjN and BjN can then be obtained, as before, from Figures 5.1.2-1 for deter-
mination of the attachment loads (Eq. (2) of Paragraph 5. 1. 2).
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9.3 DETERMINATION OF THE ATTACHMENT-HOLE FLEXIBILITY FACTOR

The flexibility of a given attachment-hole combination must be determined quantita.ﬁvely
in order to make use of the solutions presented. If load deformation curves for the specified
splice materials and temperatures are available (Figure 5. 3-1), an initially determined slope

1

K, = f gives the stiffness (or flexibility) in the elastic, low-load range.
o]
2
nitial Slope  @— [ — R
e A\ .
L WY AYA ] —-
/ N’
- - }
ks ,}/ —-A|-—
-§ Ks = Secant Stiffness
|
/4—— Secant Slope Line

>
A (Deflection)
FIGURE 5.3-1 ATTACHMENT-HOLE LOAD VS. DEFLECTION CURVE

This initial slope is larger than the secant slopes encountered at higher load levels:
using this initial value would give a conservatively greater stiffness (lower flexibility} than
actual for succeedingly higher load ranges. This would result in an overestimate of the
maximum attachment load. When load deformation data is available, and the joint analysis
shows loads corresponding to secant stiffnesses that are appreciably different from those
initially assumed, then the stiffnesses should be corrected and the analysis repeated. Such
a procedure should converge raptdly to a valid solution. ' :

If load deformation data is not available, the limit bearing load criteria of Reference 5-2
may be used to obtain an estimate of the attachment-hole flexibility. These criteria result in an
overestimate of the attachment-hole flexibility and an underestimate of the maximum attachment
load at load levels below yield.

As an example of the way in which the criteria of MIL-HDBK-5 (Reference 5-2) may be
used to estimate the attachment-hole flexibility factor, consider the joint(in the illustrative
problem)of Figure 5.1, 2-2 in which the bolt diameter is 1/4 in.,the upper sheet is . 125 in.
thick titanium and the lower sheet is ., 250 in. thick aluminum.

Assuming the aluminum plate to be of clad 2024-T6 material, Table 3. 2. 3. O(f) of
Reference 5-2 gives a bearing yield stress of 78,000 psi, The load at this yield stress is
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5.3 (Cont'd)

Palum.

If the titanium sheet is taken to be 6AL-4V material, Table 5. 2. 4. 0(b) of Reference 5-2
gives a bearing yield stress of 198, 000 psi. The load at this yleld stress is

= 78,000 (. 250) x 1/4 = 4875 lbs.

Piitan, =~ 198,000 (.125) x 1/4 = 6200 lbs.

The average yield stress load is thus

- 8200+ 4875 _ 5590 1bs.
avg. 2

To find the bolt-hole flexibility, the deformation for which the average yield load occurs
is taken as being equal to 2% of the hole dlameter (Reference 5-3, Paragraph 3.6111), For
this deformation

g = A - L0 ] 90,1078
avg pa.vg 5590

5.4 REFERENCES

5-1 Report RDSR-3, Analysis of Joints, Republic Aviation Corporation (to be issued)
5-2 MIL-HDBK-5, Strength of Metal Aircraft Elements, March 1959

5-3 ANC-5 Bulletin, Strength of Metal Aircraft Elements, March 1955
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SECTION 6

THERMO-ELASTIC ANALYSIS OF PLATES

WADD TR 60-517 6.0






Paragraph

6

6.

1

.1:1

.1.2

SECTION 6

THERMO-ELASTIC ANALYSIS OF PLATES

TABLE OF CONTENTS

Title
Thermo-Elastic Analysis of Plates
Theory of Deformation of Plates
Definition of a Plate
Assumptions for Linear Plate Theory
Three Kinds of Plate Problems

Fundamental Equations of Thermo-Elastic Plate Theory (with
illustrative problem)

Bending of Plates

Bending of Rectangular Plates with Linear Gradient Through the
Thickness

Unrestrained Rectangular Plates
Clamped Rectangular Plates

Simply Supported Rectangular Plates
Square Plate -~ One Edge Free

Bending of Circular Plates with Linear Temperature Gradient
Through the Thicknesas

Unresatrained Solid Circular Plates
Clamped Solid Circular Plates '
Simply Supported Solid Circular Plates

Circular Plates - Temperature Difference as a Function of the
Radial Coordinate

Clamped Plates (with illustrative problem)}

Simply Supported or Free Plates, TD = aKrK

WADD TR 60-517 6.1

6.13

6.13

6.14
6.14
6.14
6.17

6.17

6.17
6.17
6.17

6.18



TABLE OF CONTENTS (Cont'd)

Paragraph Title

6.24 Approximate Solution of Free Plate with Arbitrary Temperature
Variation Through the Thickness Only

6.3 Slab- Problems - Plates

6.3.1 Thermal Stresses in Rings - Asymmetrical Temperature
Distribution

6.3.2 Thermal Stresses in Solid Circular Plates Due to Asymmetrical

Temperature Distribution

6.3.3 Circular Disk with Concentiric Hole Subject to a Power Law
Temperature Distribution

6.3.4 Circular Plate - Central Hot Spot

6.4 References

WADD TR 60-517 6.2

6.26

6.29

6.31

6.34

6.42

6.48

6.57



SECTION 6 - THERMO-ELASTIC ANALYSIS OF PLATES

This section is concerned with the determination of thermal stresses in plates. For
example, solid and hollow bulkheads are plate-like major components in the semi-monocogque

type of construction used in air and space vehicles,

The thermal-mechanical problems related to plates may be divided into bending, slab
instability types. The first two are discussed in this Section 6 while the instability type of

problem is treated in Section 9.

The following symbols are used throughout this section:

a, b Planform dimensions of rectangular plates; radii
h Thickness of plate
r,e Polar coordinates
u Radial component of displacement
u, v, w Middle plane displacement in the x, y,and z directions
X, ¥, z Rectangular coordinates
u*, v¥ Displacements in the x and y directions
D Eh®

12 (1-v2

Young's modulus -

h/2
MT aE f Tzdz
~h/2
Mx, My, Mxy Moments per unit of length
h/2

NT aE n/2 Tdz
Nx. Ny‘ ny Forces per unit of length
P Distributed lateral load
T Temperature
TD.AT Temperature difference between the upper and lower faces
o Coefficient of linear expansion
€’ €yy* €2z

Components of strain
€ xy: € yz y € zX
v Poisson's Ratio
% %o o0 Components of stress in polar coordinates

T ayy' L.
o o o Components of streas in rectangular coordinates
xy' “yz' zx

P Stress function
o2 & &
2 2
ax %
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o (32+a2>(32+a2)
o2 oy N oy

6.1 THEORY OF DEFORMATION OF PLATES

6.1.1 Definition of a Plate

A plate is defined as a non-rigid three-dimensional structure in which one dimension,
the thickness, is much smaller than the remaining two dimensions. In its simplest form, the
theory of plates can be regarded as an extension of beam theory.

6.1.2 Assumptions For Linear Plate Theory

The classical theory of plates is based upon the following assumptions:

(1) The material is assumed to be homogeneous, isotropic, and to
obey Hooke's Law.

(2) The constant thickness of the plate is small compared to its other
dimensions.

(3) The deflections of the plate are limited in magnitude and are of the
order of the plate thickness. It can be shown that this restriction means that the effects
of the normal deflections upon stretching of the middle plane of the plate are negligible.
Consequently, only negligible stresses are induced in the median plane of the plate when
the plate is loaded normally.

{4) Plane sections which before bending are normal to the median plane
of the plate remain, under the above conditions, plane and normal to the median plane
after bending.

The median plane of the plate is assumed to lie in the xy-plane and the
thickness of the plate is h. If the plate is loaded by forces normal to the xy-plane
then the element will distort as shown in Figure 6. 1. 2-1, where u* and w are the
displacements in the x and z directions, respectively.

From the assumption that the deflections are small and that no median
plane displacements or stresses are induced under deformation, the point O will be
displaced oaormally to the strainless median surface (the upper one) and the plane
section AUB will rotate into position A,OB,. The angle between the horizontal x-axis

and the tangent to the deformed plane at point O is jw.
ox

In accordance with the assumption that plane sections remain plane and
normal after bending, the angle of rotation of the cross section A10B1 will also be
8w. Then for the small assumed deflections
9x

aw
* TW
utm-z o

In a similar manner, the displacement in the y direction for any point a
distance z from the median plane is given by

aw
5y

vEm -3z
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.1.2 (Cont'd)

c ( -—-: - ?C >
{ J'T °,B:-—'L— N

Median Plane of Plate

FIGURE 6.1.2-1 CROSS SECTION OF PLATE BEFORE AND AFTER

DEFORMATION
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6.1.2 (Cont'd)

{5) The normal stresses through the thickneas of the plate are negligible

because the surface loads are small compared to the bending stresses induced in the
plate.

6.1.3 Three Kinds Of Plate Problems
' The thermal-mechanical problems to be considered may be divided into

(1) Bending Problems - oecur when the temperature varies in the thick-
ness direction and the mechanical loads are normal pressures,

(2) Slab Problems - occur when the plate is loaded by mechanical forces
paraliel to the middle plane of the plate which are uniform through the thickness and the
temperature varies in the planform direction only. This is a plane-stress problem
{see Section 2 for definition of plane-stress) and is considered in Sub-section 6. 3.

{3) Instability Problems - take place when there is edge restraint to
expansio n the direction parailel to the middle plane of the plate (see Section 9).
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6.1.4 Fundamental Equations Of Thermo-Elastic Plate Theory

The direct approach to plate problems is to derive the equations of
equilibrium of forces and compatibility of displacements. These equations are in

the form of partial differential equations which must be solved subject to prescribed
boundary conditions.

The differential equations for the thermal-mechanical problem of plates
are discussed next, followed by an illustrative example. The xy-plane is assumed to -
be the middle plane of the plate of constant thickness h and the shape of the boundary
is arbitrary. The components of displacement in the x, y, and z directions are de-
noted by u*, v*, w (the symbols u, v, in this section are reserved for middle plane
displacements in the x- and y- directions,respectively). Under the assumptions that
plane sections remain plane, the displacements u*, v*, w are of the form:

uk (x,y,2) =u (xy) -2 2% (x.)

v* (X,y,2) = v (x,y) - 2 -gy'! xy) (I

waw(x,y).

The strain components in planes parallel to the xy-plane are :

u* _ Bu zazw
€ x™ Bx ax x2
e = v ow 2
yy 9y By 8y2
2
u* av* au av aw
= = o+ = —_— _— e
‘w8  ax “ay t ax 2% oaxay -

du v du .  dv

: -, =, —+ = i le pl f
Note: 8x* By’ dy + 3x are the strain components in the middle plane of the

plate and arise as 4 result of in-plane deformations. The additional terms are due
to the bending of the plate.

The corresponding stress components are (T = temperature above room
temperature datum):

E
T T T (G ey, (1Y) aT)

E
VT LT (€, ey - 149 aT) (3)

E
o T 1y fxy s
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6.1.4 (Cont'd)

which introduce the following forces and moments per unit of length (Figure 6. 1. 4-1):

h/2
Nx - crxxdz
-h/2
h/2
N d
v = f Uyy z
-h/2
h/2
N = f g _dz
Xy Xy

h/2
M = o zdz
X XX
-h/2
h/2
M = f g zdz (4)
y Yy
-h/2
h/2
Myx-:-Mxy- f o zdx .
-h/2
/— M
X
| -
N
x
N
Xy
- Nyx

FIGURE 6.1.4-1 POSITIVE DIRECTIONS OF FORCES AND MOMENTS

Substitution of Eqs.

Eh
N =
X 1 -v2
Eh
N =
y 1-p?
Eh
ny. 2(1 +v)
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6.1.4 (Cont'd)

azw 32w M'1‘
My =D\ = *¥V 5 |- iy

ox dy

2 2 M

3y ax

M, = (1 —v)D(ai—;“-'-).

where the bending rigidity per unit of length of the plate is

Eh>
2(1-¥?

D

and h/2
Np= aE J Tdz

M,.= aFE f Tz dz ,

where o and E are assumed to be constant,

The equations of equilibrium in planes parallel to the xy-plane are

BNx N
wx _ﬁay =0
aN aN
Xy + y = 0 1
ax By

and these equations imply the exiatence of a stress function ¢ (x,y) such that
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6.1.4 (Cont'd)

Integration through the thickness of the compatibility equation for the plane
stress problem (Reference 6-1) gives :

vie =-V2NT ,
where
2 = 82 82
V=3 * % 10
ax Ay (10)
2
vi=

52 52 52 5
— oy N5 ) -
ax oy X Iy

The equation of equilibrium in the z direction Reference 6-2) is

o"M_ 2azmxy aZMy 8w 52w 2w
- + ——P-(N + 2N —— +N ——),
sz Axdy ayz X 3xz Xy 9x8y y 3y2 (11)

where P (x,y) is the distributed lateral load in the positive z direction; and
Mx' My’ Mxy are the conventional bending moments per unit of length, If

the quantities Mx’ M , M__ are expressed in terms of the displacements from
Eq. (5), then the equilibrium equation in the z direction becomes:

2 2 2
4 Ow I w Aw 1 2
DV w= P+ NX a_xz + Ny — + 2ny Eﬁb(ay -V v MT . (12)

The solution of a problem requires in general that Eqs. (10) and (12) be
solved simultaneously subject to appropriate boundary conditions.

If the plate is supported so that Nx’ Ny, ny are negligible, as would occur

if there was no restraint in the median plane of the plate and no applied in-plane
forces, then the simpler equation may be used:
4 1 2

DV w=P-i5 V Mp. (13)

It is clear that the equation expressed by (13) is equivalent to a "mechanical
problem" with normal loading = P - li_ 2 MT , so that all the known

techniques (Reference 6-1) for non-thermal problems may be used.,
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6.1.4 (Cont'd)

A solution of the differential equations in the case of a simple plate problem
follows.,

A clamped circular plate of radius R is subject to a linear gradient through
its thickness h where the temperature is T1 and To at the top and bottom faces,
respectively (T1> ’I‘o). Find the deflection and stress assuming that the middle
plane of the plate is free to expand.

2z

FIGURE 6.1.4-2 CLAMPED CIRCULAR PLATE WITH LINEAR GRADIENT
THROUGH THICKNESS

The temperature variation is denoted by

T +T1 z

—_— _—0 -
T = 5 +(T - T

V) h -

From (13), the differential equation to be solved is

DV w=P- iv v MT R
where 9
P=0, and V MT = 0 as MT does not depend on x and y.
Therefore
viw -0, (14)

or in polar coordinates, with r as the radial coordinate:

4
Adw, g 3dw 2dw,  dw (15)
4 3 2 dr
dr dr dr
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6.1.4 (Cont'd)

This is an equi-dimensional differential equation and the solution is readily
found in an elementary differential equations text,

w=Alogr+Br210gr+Cr2+D. {18)

However, the deflection and bending moment must remain finite as r—»0,
This implies that A = B = 0, Therefore, w reduces to

w=Cr2+D. a7

The clamped boundary conditions are w = %‘;v_= ¢ when r = R, There-
fore, substitution of Eq. (17) into the boundary conditions yields w=0,
i.e., the normal deflections are identically zero,

From Eqs. (5) or analogous equations in polar coordinates, the
radial and transverse moments per unit iength are given by

_ B T

M, =Mg= 7% (18)
where from Eq. (7)

l}/z (TO * Tl} z
MT =a E 5 +(T0_T1)H z dz ,
-h/2

or aE (T - T,) h?

My = 12 . (19)

The components of maximum stress in the radial and transverse
directions are

_ 6 g -8 M . @E(T1-Tg

2. eelnmx 2 Mtz Mo 31 -V) (20)
aEAT
o =g ==
rrlmax ool 2 (1-¥) @1

where AT = ’I‘1 - T0 = difference in temperature between the upper and

lower faces, respectively.

Note that in the simply supported case with boundary conditions
w = Mr = 0, there result zero stress and paraboloidal deflections (see Paragraph

6.2.2.3). More preclse analysis yields spherical deflections.
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6.2  BENDING OF PLATES

Bending problems in plates occur when the temperature varies in the
thickness direction (and possibly other directions) and the mechanical loads
(if they exist) are normal pressures. In the succeeding paragraphs emphasis
will be placed upon the linear gradient through the thickneas.

6.2.1 Bending of Rectangular Plates With Linear Gradient Through The
Thickness _ ,

The rectangular plate is shown in Figure 6.2.1-1 and the temper-
ature variation through the thickness is assumed to be linear. Expressions
for stresses and deflections corresponding to various support conditions are
given in the following parasgraphs.

- . o

L
LA

i

L

b/2

LI
11

W

L

—tfg—

Ll

b/2 \

/
LI,

W

7
[,

W

‘4‘-

FIGURE 6.2.1-1 PLATE GEOMETRY SHOWING A POSITIVE LINEAR THERMAL

GRADIENT THROUGH THE THICKNESS
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6.2.1.1 Unrestrained Rectangular Plates

A free rectangular plate subjected to a linear temperature distri-

bution through the thickness and constant temperature over the planform is unstressed.
The plate becomes curved and fits a sphere of radius inversely proportional to the
difference in surface temperatures and inversely proportional to the thickness.

6.2,1.2 Clamped Rectangular Plates

Maximum Stress:

EaAT +h

Ox = Uy‘y = 2(1 -v) {+ sign corresponds to face z = 5 )y (1)
where the temperature difference is defined by
- _h. h
AT = T(-3)-T ¢3)
Deflection: The transverse deflection w is identically zero.
6.2.1,3 Simply Supported Rectangular Plates
Deflection (see Figure 6. 2.1-1):
w .. OTX mr
_ -aAT(1+V)4a2 sm(—a } B cosh(—L)a . ) )
B 3, m3 coshar !
i m=1, 3,5, ..
where _ mmb
*m = Za - (1b)
Bending Moments Per Unit of Length:
w
. mT mry
v - 4DoAT( __y2) Z sin (TZ') cosh (=)
X 7 h m cosh a (2a)
m=1,3,5...
@
. pmrx mry
M - @AT(1-¥*D _ 4DaaT 1 v? Z sintyJeoshlT)
y h Th m cosh a
m=1,3,5...

(2b)

The series for w converges very rapidly while the series for the moments -
converge more slowly. Judgment must be used in choosing a sufficient number
of terms for the required accuracy. However the formulas for the maximum
bending moments and stress are expressible in closed form as given below.
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6.2.1.3 (Cont'd)

Maximum Bending Moments:
(Reference 6-2)

2
+Eh"aAT
M) = (M) = . |
xy=b/2 Y'x=0,x=a 12 (3a)
Maximum Bending Stress:

EaAT :

(o) =(c ) = =5 -
Xy=2b/2 Y'x=0, x=2a 2 (3b)

Equations (1a), (2a), and (2b) have been evaluated in non-dimensional form
for the square plate as shown in Figures 6. 2. 1. 3-1 through -3.

0.0 0.2 o4 % os 0.8 LO
000 '
T T T
x
= > A =g
y Yy m o
004 Zle :
[¥)
\ 74
Wy 7= /
~ N 2:5,2 SIMPLE 4
wh NV SUPPORT _»
"-———-"
alATa® 008 Mg V4 £
L3 4 / ~ FREE__
N L 0e
| ~
- ,,
~
~ 7’
ol2 S -
L) S
0.18

FIGURE 6.2.1.3-1 DEFLECTION (w) VS. POSITION (x) FOR y PARAMETERS
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6.2.1.3 (Cont'd)
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X
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FIGURE 6.2.1.3-3 BENDING MOMENT (Mx) VS, POSITION (x) FOR .y PARAMETERS
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6.2.1.4 Square Plate -- One Edge Free

Figures 6. 2. 1, 3-1 through -3 demonstrate the deflections and
bending moments per unit of length vs. position in non-dimensional form,
This shows the effect that freeing an edge has on the deflections and moments
(Reference 6-3)., The quantity Ma In the denominators of the moment expressions

is defined by 9
Ma=;42frAT(1'V). (4)

6.2.2 Bending of Circular Plates with Linear Temperature Gradient Through
the Thickness

Formulas and curves for the deflection and stresses of circular plates
(see Figure 6.2.2-1) subjected to a linear temperature distribution through the
thickness are now presented.

Upper Face

.

FIGURE 6. 2.2.-1 PLATE GEOMETRY

6.2.2.1 Unrestrained Solid Circular Plates

A free circular plate subjected to a linear temperature gradient through
the thickness is unstressed. The plate becomes curved and fits a sphere of radius
directly proportional to the difference in surface temperatures and inversely pro-
portional to the thickness.

6.2.2,2 Clamped Solid Circular Plates

. _ _ EqAT : '
The maximum stress Owr = %0 = % B3 a-v) occurs at the faces where
AT is the temperature difference between the upper and lower surfaces. The transverse
deflection is identically zero.

6.2.2.3 Simply Supported Solid Circular Plates

The plate is unstressed. The deflection w is given by

-a AT 2 2
2 @ ")

where a is the radius of the plate.
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6.2,3 Circular Plates - Temperature Difference as a Function of the Radial
Coordinate

The differential equation for this radially symmetric case is

viw = &-;—)—“— v2 Ty 1)
where T,, is the temperature difference between the upper and lower faces. The
variation of temperature is assumed to be linear through the thickness, however,

the variation with r is arbitrary,

It is assumed that the temperature T is expressible by a convergent power
series expansion

s o]
T = - -tzT z ax rK + C (aK, C are constants)
K=0

so that the temperature difference TD is given by
@ K
TD = 3 AT . (2)
K=0

(Note: Positive z is downward)

The solution of Eq. (1), with the temperature difference representation
as shown in Eq. (2)is

K+2
2 (8 0] a.r
w = c, L+ c+12Na v K __ @)
1727 % h Ki2)2
K=0 )

where C,, C_ are arbitrary constants so far and must be determined by the
boundary; conditions.
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6.2.3.1 Clamped Plates

For power series temperature distribution, the solution of Eq. (3) of Paragraph
6. 2. 3 for a clamped plate of radius a is

(443
a
w=ne z 5 [2 K2 4 kK2 23K (ke2) ] ) (1)
K=0 (K+2)

The bending moments in the radial and transverse directions are

Eh2 o s "’lKaK r K
My = - T2qi-v) 2 K2 {(Kﬂw) &) _(lw)} " Tp @)

K=0

2 ‘ a af K l
_ Eh” o Z K2 r
Me__T.V_) > e [1+V([{+1)] (a) _(1+v)}_TD . (3)

For monomial distribution, the deflections and moments in non-dimensional form

when ’I‘D is expressed by the monomial TD = ap rKare
K+2 2
h 1 . K : K
3 = | ) - b)) v @
(1+v)a aTD(a) {(K+2)
M - | [,r)K+ gl+v!] _
£n? K2 L ‘a -v) )
E TD(a)
M K
o _ 1 r (1 +v)
Eh?" T K42 [ (K+1) ¢ a ) t a-v) ] ' 6)
1z ¢ To®

where TD(a) is the temperature difference at r = a. Curves of non-dimensional deflections

and moments are presented in Figures 6.2.3,1-1 through -3 for K=0, 1, 2, ... 5. Super-
position may then be used for TD given by polynomials in r. The determination of the poly-

nomial describing the radial variation of TD can be obtained in the same manner as shown in
Paragraph 4.1.2.3.1.

WADD TR 606-517 6.19



6.2.3.1 (Cont'd)

3.2

28

24

20
whik +2)°

azat.TD(a )
1.6

i.2

0o

T~

/

_’ //

=5

/

N\

\\ﬂ\

e\

\

AN

-

=

o
$

o .2

4 .6

r/0

.8 1.0
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The following illustrative problem demonsirates the solution for a clamped aluminum

plate for which 7
a = 10 inches h = 0.20 inch E = 10" psi
v = 0.30 a =12x10"% in. /in. /°F
and where the radial variation of temperature difference through the thickness is given by
TD = 200 + r2/2.

Solution of the clamped plate problem involves the determination of the maximum deflec-
tions and stress. Thus, if the coefficients of the polynomial expressing the temperature differ-
ence distribution are all of the same sign, as above, then the maximum magnitude of deflection
occurs at the center of the plate while maximum magnitudes of radial and tangential moments
occur at the boundary. Thus, considering the first term of the polynomial,

T () = Th @) = 200 ,

K=20.
From Figure 6.2.3.1-1
w! &

and from Figures 6,.2,.3.1-2 and 6.2.3.1-3 ,

M M!
r
—, - e | i
n Tt Eh™
12 @ FD @) 12 aTb (a)
r r
—_ =1 —— =]
a2 a
En® o 107 x4x1072x 12107 x 2 x 162
1 @ (a) = is 80 .
D
There_fore,

M;] = M'e] = 1,43 (80) = 114.4 in.lb./in.
r r
?= 1 —_=1

For the second term of the polynomial,
2

2
) = L. e = (10)°_
@) = 5 5 I @) 5 = 50,
K= 2
From Figure 6.2.3,1-1
2
[
W (Ks2) - 1.30,
a ae'r'[') =)
X -y
a

WADD TR 60-517 6.23



§.2.3.1 (Cont'd)

2

11 r -
a” elp @ 102y 19516 x5 x 100 1875
2 N 2x10-Tx 1€ oo
h(K+2}
Therefore,
wi = ,01875 (1.30) = .(24in
r —
—=0

From Figures 6.2.3.1-2 and -3

]'_VIII'
2 . L = ’71 »
‘Eh I
o QI'D {z) £_=1
a
MH
5 o = 1.21 ,
Eh”
15 aTD (2) o,
a
Eh® QT (@) = 107 x4x102x12x20 x5x 100 _ 20
12 D% 12
Therefore,
My = 20(.71) = 14.2 in.lb. fin. ,
xr -
~a
MYy = 26 (1.21) = 24.2 in.lb./in.
I .
-+ a
By superposition
w w' +w" = 0 .24 = ,(24 in.
r _ r
— =0 — =0
i a
M, = M+ M} = 114.4 + 14,2 = 125.6 n.lb./in,
%- e
M = My + M, = 114.4 + 24,2 = 138.6 in.lb./in.
;- fe
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The maximum stress is given by

L]

a

6 6
“ee] ) =L .M ] 5 (138.6) = 20,790 pai .
_ =1
a
Note: If the polynomial representing the radial variation of the temperature difference consists
of mixed signs, the points of maximum moments and deflection occur at the boundary or in the
interior where the radial derivatives of the quantities are zero,

K

6.2.3.2 Simply Supported or Free Plates, TD = apr

Once the clamped plate problem due to TD = aKrKhas been solved then the

simply supported or free plates may be sclved by using the principle of superposition. It
is only necessary to add the solution of the mechanical problem of a circular plate subject
to a uniform radial! bending moment equal and opposite to

Mr _.E_ =1

{to relieve the moments on the boundary) determined from Egq. (b) of Paragraph 6.2.3.1.
A straight forward calculation yields the result that for a simply supported or free plate
add the following non-dimensional expression to the solution for a clamped plate:

M, ) Mg _ ' 5 o
Eh® oT @)/12  Eh’ aT (@)/12 (K+2) (v-1)
(=)
r
-1
= e . 2)
a2 aTD(a) K+2
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€.2.4 Approximate Solution of Free Plate with Arbitrary Temperature Varia-
tion Through the Thickness Only

The problem of the determination of the stresses, strains, and displace-
ments in an unrestrained plate of arbitrary planform (Figure 6,2.4-1) which is
subjected to an arbitrary temperature variation in the thickness direction has been
solved approximately (Reference 6-1). The procedure used is to solve the problem
as a three dimensional elasticity problem using the semi-inverse method of St. Venant.
This simply means that the form of the stress distribution is assumed and then the
equations of equilibrium, compatibility and boundary conditions are examined in the
light of this assumption.

FIGURE 6.2.4-1 PLATE WITH ARBITRARY PLANFORM AND CONSTANT THICKNESS

The temperature of the plate varies in the thickness direction only, that
is, T= T(z). With this assumption, it is further assumed that

O™ T = ozy = ny =0 n

Tx = uryy = f{z) .
It will now be shown that the function f{z) may be determined so that the

equat_:it.)ns of equilibrium and compatibility are satisfied identically. The boundary
conditions of free traction (no restraints) are satisfied on the average,

Substitution of Eqs. (1) into Eqs. (1) of Paragraph 1.2.1 (no body forces)
shows that the equilibrium equations are satisfied identically. Furthermore, substitu-
tion into the compatibility equations (Section 1) reveals that three of the compatibility
eq;xat.ifons are satisfied identically, while the other three equations will be satisfied
only i
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9 .
d ( aEI‘)

e f + —= =0 (2)
dzz 1-v

which has the solution

aET _
f=Cl+sz-m— Uxx-ayy, 3)

where the constants C1 and C,, are to be determined from the boundary conditions
of zero traction. It is not pogsible to satisfy the boundary conditions pointwise.
However, the constants C1 and C, may be determined so that the resultant force
and moment per unit of length prgduced by Yyx and Jyy are zero over the edge of the

plate,
h/2 h/2
f O x dz = f g _dz = ¢
h/2 h/z ¥Y

@)
h/2 h/2
f Jxxzdz = f g zdz=
-h/2 -h/2 YY
Substitution of Eq.- (3) into Eqgs, (4) yields ;
h/2 h/2
_ . ¢F _ 1 ., 122 )
axx_cyy-—_l—v [T+hf I‘dz+m—f I‘zdz]
-h/2 ~h/2
so that finally
N
=a =i [apr. D 1z
Uxx = ayy =17 aET + h + h3 MT]' (o)
where NT and MT are defined in Eq. (7) of Paragraph 6.1. 4. The parallel to the
beam equation is apparent.
According to St. Venant's principle. the solution (5) is a very good ap-
proximation for traction-free edges at distances from these edges larger than two
or three plate thicknesses.
Once the stresses have been determined, the strains are found from the
stress-strain relations (Hooke's Law). The displacements are then determined from
the strain-displacement relations. The complete solution then appears as follows:
Stress Components: I =0 =1 J_ a¢ET + NT + 122 M
pononS: xx ~ Yyy T T-w h .3 T]
(6)
= g = U = J = @
ZZ X zZy Xy
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N
’ = =i .—l 12z
Strain Components: exx = Eyy £ [ Pt h3 MT ]
= 2V [ﬁ+ 12z . ] i T 7
‘2z T@-voE [0 T3 Mrif\T) )
€ xy = € yz = €,y =0
Displacement Components: (Exclusive of Rigid Body Motion)
N
- L [lT , 12
R > [ R © 3 MT] X
-N
I T 12z :
V=TE [h+ o3 MT]Y ®)
: Z
. _ 5 2 2 1 2vz
LA MT & +y) + ———————(1 IE {(]_ +V} aE fo Tdz - = NT

2
_ 1h2Vz MT}
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6.3 SLAB PROBLEMS - PLATES

Slab problems occur when the plate is loaded by mechanical forces which are
parallel to the middle plane of the plate and uniform through the thickness, and the
temperature varies in the planform direction only. This is a plane stress problem,

ie.,o, = Oy = T2z " 0. The effects of the mechanical loads and temperature

may be superposed.

The differential equation for the slab problem is now derived. In the plane
stress problem only one equation of compatibility is satisfied, namely

2 2 2
aexx 9 € aexy

. yy _ i
oy’ ox? ox dy (1)

{See Reference 6-4)

If the stress-strain law expressions

=1 -
€Cx- E O~V oyy) + aT(x,y)
€ = -1—(0* -vo )+ oaT(x,y) (2)
vy E Vyy XX i
€ - 2(1 +¥)
xy E xy
(a' = =g - 0) ’

3o Ao
xx + Xy =0
X ay
3)
o do
X ., _¥Yy¥y .,
ax By
there results the equation
vl (o, +a )+ EavVT =0, (4)
XX yy
where \ 32 32
v° = ot 3 in rectangular coordinates.
ax Ay
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This is the compatibility equation in terms of stresses and temperature only.
If a "stress function" ¢ (x,y) is introduced such that the components of stress
are derivable from ¢ by

2 2
=29 - 29 -_ 98¢
T 2 T 2 T T oy ®)

then the equilibrium Equations (3) are automatically satisfied, and the com-
patibility equation on ¢ becomes

vls = - EaviT, (6)
where
v4 z(i + .9.?_ )( gi, + ﬁ )
8x2 ayz 8x2 ayz in rectangular coordinates.

Since the effects of the mechanical loads and temperature loads may be
superposed, it 1s sufficient in many areas to consider only the thermal problem
with the boundaries unrestrained so that the components of stress normal and
tangential to the boundary are zero at all points of the boundary (condition of
zero traction).

The solution of Eq. (6) for circular plates or rings subject to general
asymmetrical temperature distributions has been solved in References 6-5 through
6-8. The results of these investigations are shown in Paragraphs 6.3.1 and 6. 3. 2.

The particular case of radial symmetry is treated in References 6-9
through 6-11, and the results of these investigations are given in Paragraph 6.3. 3,

Theoretical and experimental work has been done for the plane stress solu-
tion of rectangular plates subject to planform variation of temperature, for exampte,
References 6-12 and 6-13. However, detailed parametric studies have not been
made. The above problem indicates an area which should be explored. No further
discussion will be given to the slab problem of rectangular plates in this Manual.
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6.3.1 Thermal Stresses in Rings - Asymmetrical Temperature Distribution

The plane stress linear elastic solution of a traction-free circular ring
of inner radius a and outer radius b, subjected to a general two-dimensional
temperature distribution, was considered in References -7 and 6-8, Theory
and formulae were developed for the determination of the polar coordinate stress
componenis corresponding to temperatures of the form

K

T='I‘o (E)KcosneorT=To (E) s8in no,

where K and n are restricted to non-negative integers. The purpose of this
section is to give a tabular set of quantities for the direct calculations of the
stress components corresponding to values of K and n from 0 through 3 for

2=0.2, 0.5, 0,8 respectively. This range for the parameters K and n should
Be adequate for most practical application. A numerical example is given for a
particular temperature distribution to demonstrate the application of Table6. 3. 1-1,

The streas components corresponding to a temperature distribution of the

T=T, (%)K cos n® (1)

form

may be expressed in the form

i3
rr _
_Et!To = BK.n cosn ©
o
ro _
EG_TO = CK,I’I ginn o (2)
%00

EETO = DK.nCOB no ,

while corresponding to

T = 'ro(g)K sin ne , 3)

the stress components are
= =B sinn o

mo = -CK,D cos ne
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%90

Ear - D
[0}

K,n sinn & ., {1)

i : ‘a L K
The quantities BK.n )CK.n‘ and DK,n are functions of B'E N and may be
found from Table 6.3.1-1. Use of this table is demonstrated by the following example.

T=T, (%)2 (1-cos@)+T,; =T, (5‘1)2—1'0(%5 cos © + T,

then

Eor = Bz’o—Bz'lcos o

o = 02.0 - 02.1 gsin 6 (5)

_EaTo = D2l0 - D2'1 cos O .

The numerically greatest stress component, for example, is given by

=|-,375 -,1733 | =0.55

EaTo EaT
rlb=1,6=rn

max

I"ee l _ I"ee

(o}

This corresponds to a compressive stress in the transverse direction at the outer boundary .
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6.3.2

temperature

Superposition may then be applied if there are several terms in the temperature

expression.

Case I:
r

%06

c"1'6

Case II:

Thermal Stresses in Solid Circular Plates Due to Asymmetrical
Temperature Distribution

Formulas and curves are presented for the stresses and displace-
ments in an unrestrained solid plate (plane stress solution) corresponding to the

K
'r='ro(5) cosn®@(K=0,1,2...,n=0, 1, 2...).

b

The formulas for the stress components are:

K ¥n-2

o = (apK+5pn-2+cpn)Eo[rocoa ne

= (Ap%+ Bp" 2 + Co") EaT_ cosne

= (ép

K

K =n-2

Il

|

+ 80" 2 + D EoT  sin n®

@' pn—2 + b pn—'zln p + cpn) EQTO cos n ©

@2 + B2

In p

+ Cpn) EC!TO cosn ©

00" 2 +8%" %Inp +vyp") EaT sinn ©
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where

p=L A - -[T{+12)[K+2)
(x+2)% -n2
s = —n (K+) p - —n-b-¥) _ . - -3
(K+2)2 —n2 2 l:('{+2)2 —n2]
c = S@)n-2) c = @h@ o @ym
2(K+2+n) ’ 2(X+2+n) 2(K+2+)
: -2
y _ _(+l)(@n-2) v _ Th -3n +2 . ~—(n+l)
a 4n ' A P A
2
b.z_n;_1=_3v=_5', a=_n__%-_22_
(K+2)"-n

The stresses O %0’ Tro 8T piotted in Figures 6.3.2-1 through -3 forn=1, 2, 3

with K as a parameter. The axisymmetric case, n =0 is shown in Figure 6.3.2-4. From
symmetry, the shear component %0 equals 0.

The following should be noted:

(1) When K = n, the temperature is a harmonic function (i.e., VzT = 0) since

rMcosnOistherealpartofz® (z = x +iy). Thus the corresponding stress com-
ponents

Urr = Ure = %9 " 0.

2 ¢
2) When T = T0 (—;——) sinn n=1, 2, ...), then in the formulas for the

stress compenents, Eqs. (1) and {2), cos n© and sin n® must be replaced by
sin'n& and -cos n8, respectively.

In the following example in which a circular bulkhead of radius b is subjected to
a temperature distribution .

2 .
= X -
T—To(b) (1 coe;e)+T1

2 2
= r - r
To ( b,) To(b ) cosg + Tl’

where To' T1 are constants, the expressions are desired for the stress components.
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FIGURE 6.3.2-1 RADIAL STRESS DISTRIBUTION IN A DISK WHEN A TEMPER-
ATURE DISTRIBUTION T =T _(r/b)X cosn © (n =0,1,2,3) IS
MAINTAINED
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FIGURE 6.3.2-2 HOOP-STRESS DISTRIBUTION IN DISK WHEN TEMPERATURE
DISTRIBUTION T = T_ (r/b)K cosn © (n = 0,1,2,3) IS MAINTAINED
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FIGURE 6.3.2-3 SHEAR-STRESS DISTRIBUTION IN DISK WHEN TEMPERATURE
DISTRIBUTION T = T, (r/b)K cos n © (n = 1,2,3) IS MAINTAINED
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6.3.2 (Cont'd)

2
(1) Stress components corresponding to TO(E) : (K=2, n

Eq. (1) yield the coefficients

_4 1 -34 3 =
a:i—-é:—z. A=_(_)_%l._._4_’ 6 0
(4
b =0, Ba-b=0, B =20
czﬂﬂ)i-:g)_:l C=(l)_(g:,:i ‘Y=0
2 (4) 4 > 2(4) 4

which in turn yield the desired stress components

rr 1 2 1
EaT - (737 * 7
o

00 3 2 1
EaTo‘('4" *3)
‘re _

EaT0

(2) Stress components corresponding to To (-;—) cos &: (K
Egs. (1) yield the coefficients

S - A="5 " 5 6

B=0I B’O' ﬁ
= A2 _1 -6 _ 3

c= 3% 5 ° C=35 - 5° L4

o

v - (—~1—p +—p)cosﬂ
EaTn 5 f

o

00 _ (-jj)2+ p) cos O
EaT 5
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r 1 2 1

For =(-5¢ +5p)sine.

: 0

(3) Stress components corresponding to T, are: o =0 =g = 0.

1 rr re 00
{(4) Total Stress components are;

UI'!‘

1 2
Ear “ g (1-0,) 7 [
L 7]

(2,131

(p—l)] cos 6

= S
R|D
=i
o
|
>
| |
-
1
[
h-]
=]
e
+
o

[49 - 3] cos O

————=§ °-1) sin 0.
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6.3.3 Circular Disk with Concentric Hole Subject to a Power Law Temperature
Distribution ‘

The thermal stresses in thin circular disks of constant thickness with &
concentric hole subject to a power law distribution in the radial direction are
determined. The following three cases will be considered:

I The disk with a central hole
4 The solid disk
m The disk mounted on a shaft

Formulas and curves will be given for the radial displacement and stress components
assuming a condition of plane siress (Paragraph 2.1.7). The following symbols are
used in this paragraph:

a Inner radius of plate

b Quter radius of plate

n Exponent in temperature distribution

T Radial coordinate

u Radial displacement of points on disk

E,v,a Modulus of elasticity, Poisson's ratio, and coefficient of linear
expansion, respectively

T Temperature

T* Mean temperature when referred to the square of the radius =

r r

2 (2 - a7 '}; Trdr = (2 - 2% fa Td(r%)

L Radial component of stress

%0 ~ Tangential component of stress

Suffix a Refers to the inner radius of the disk

Suffix b Refers to the outer radius of the disk .

A circular disk of radius b and constant thickness and with inner concentric
hole of radius a is subject to the radial temperature variation

T=T (E_:g)n ' )

where Tb is the temperature at r = b.

The variation of the temperature distribution versus E—E% with n as a parameter

is shown in Figure 6.3.3-1.

The expressions for the radial displacement, and the radial and transverse com-
ponents of stress are:

R 2r

r

2 2
B [a(l +¥ )}xr" -a%) T"‘] @)

WADD TR 60-517 6.42



6.3.3 (Cont'd)

- £ Jaqsv)  BED_ o, 2)(r2-a2)'1'*] @)

T 1-v r 2r2
2 2
[+ = _—E_ [A(I -Q-p) -B—(!-_l)_ - (1 -¥ 2) C!T + (1 - yz) C!!r -a ! T*' (4)
a0 1-v 2 rz 2r2

where A and B are constants which must be determined from the boundary conditions

and
r
T = 2(r2 —alz)"1 »g Trdr . (5)

Case I - Unrestrained Disk With Concentric Circular Hole

The boundary conditions O = Datr=a, r=>b are imposed.
The expression for the displacement u in non-dimensional form is

2 2
22"“ = (1-¥) r2 +(1+V)+(1+ll)(r—2-1
aa” Ty a a ’I"b

while the expressions for L and Ogg 2TE:

) & ©)

o 2 T* - T*
rr a b
s = (1-— ) —=— M
azE:Tb ( l_2 )( 2Tb )
a 2 2
00 1 [ a a
= N (1+=-) -2T + (1 - =) T‘] . (8)
aETb 2Tb b rz b2
[
Figure 6.3.3-2 shows the radial variation of arI;T for a disk with a hole
- b
(% & 0, 0.4, 6.8) correspondington = 1/3, 1, 3 (% * 0 means a very small

hole, not a solid dlak).

Figure 6,3.3-3 shows the maximum radial components of stress versus n.

From Eqs. (1) and (8),
o,

_ %% T - 2 [““‘” "*‘] ©®
aETb Tb n+l) (n +2) a+b
o
eeb.iﬁ__,-z[__un_ﬂ)_L-L]. 10)
aET, T, m1)@+2)@d) 2
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o o
Oﬂa Geh
Curves showing the variation of and with a/b and n are given
o ETh C!ETb

in Figures €.3.3-4 and 6.3.3-5.
Case II - Solid Disk

The displacement and the stress components for u golid disk (a = 0) are
determined by imposing the conditions u] =0 = 0and o =0,
T | r=b

The radial displacement is

aT* r
u=— [(1—V)+(1+V) b ] : (11)
Tg ;

In particular, the radial displacement on the boundary is

“]rub = aT b . (12)
The equations for - and o0 in non-dimensional form are
-:JeETb 2 Tb I‘b
»
"0 _ 1 (b , Tt _ 2T)
aETb 2 Tb Tb Tb 14)

When T varies according to the power law (Eq. (1)) with n positive, ¢ r falls
from its maximum (tensile) value at the center of the disk to zero at the periphery.

At the center, o = %0 and 096 falls montonically with increasing radius (in an

algebraic sense) having its maximum compressive stress at the boundary r = b,
From Egs. (13) and (14),

a a
Ta . %% 1 (X Za). 1 a5)
t:anTb aETb 2 Tb I‘b n+2
and
g
eeb = _ 0 16
aETy n+2 ° - 19
a o
I 00 o
_ -~ Y o .
Figure 6.3.3-6 shows the variation of aE'I‘b ’ aETb y and aE’I‘b with

n for a solid disk,
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Case IIl - Disk With Central Shaft

This case is analyzed as a plane-stress problem, i.e., no account is taken
of the stress concentration at the cylindrical interface between the shaft and disk.
It is assumed that at the interface no radial movement occurs, i.e., u] r=a = 0.

The other boundary condition is that arr] =0, i.e., the outer boundary is unre-
strained, r=b
The following expressions result for O and %50°
2
1 +vy ]
ey (B2, B ] rat) -
aET, 2 [T, b2 [1“, +i] T, o2
1-v b
-]
i I T I S N L I L a8
«ET, 2 |T, b2 [1 v al ] T, 2 T,
1-v b2
In particular, the expressions for ai_ra, creea. and oreeb are:
(e}
rr T* 2 -1
aeT, = | R e-p (G (19)
b 2 b 1+V . a"
1 - t 4 b
g
00 T* 2 -V
sET, <|Te 0 (A2 (20)
*5 % 2 b 1+v g \
_ 1-» b2

o .
o T* 2 _
el; =[b(1_a )((1 +V) /(1 -v) 2)_1] (21)

a ET T, b2 awa -v) +_37
: b

Curves showing the variation of ¢
TT, »

shown in Figures 6.3,3-7 and 6.3.3-8.

aeea. and areeb with » and a/b are
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6.3.4 Circular Plate ~ Central Hot Spot

The stresses in a circular plate due to a concentric hot spot are determined (Refer-
ences 6-10, 6-11). The central hot spot may be another material at constant temperature or
a hot fluid passing through the plate. The method of solution is to solve the steady-state heat
conduction equation subject to prescribed boundary temperatures. Once this temperature

distribution is determined, the equation of equilibrium in the radial direction and the enforce-
ment of single-valuedness of displacements yields the solution.

The following symbols are used in this paragraph:

Radius of hot spot (Figure 6.3.4-1)
Outer radius of plate

Radial polar coordinate

Thickness of plate/thickness of hot spot
Radial displacement

Excess of temperature of hot spot over that relative to the outer ed‘ge
of plate

L. Radial component of streas

HE R T

Yoo Transverse or tangential component of stress

The following assumptions are made:

(1) The hot spot is at constant temperature T relative to the outer edge of the plate

(2) The plate is assumed to be insulated so that all heat enters at radius a and
leaves at radius b which is at temperature 0.

(3) Plate is assumed to be thin so that plane stress analysis (Section 2) may be used,
The outer boundary is assumed to be unrestrained.

{4) Eco is constant.

The following design equations pertain to this problem:

{1) Temperature Distribution in Plate:
Temperature = T gg (b/ :} , | 1)

(2) Radial Displacement at Junction Line r = a:

u] - aTa + 3 -¥)at at(—g—+B EoT )
=8

where a s T S b.

E a 2
where
p - —EaT [1-0-v) @ -t)log b/a)] (2a)
2logb/a {[(1 vy + (L-¥ )t] b2/a2+(1—v)(1-t}
A = -Bb2 (2b)
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e 4]
A graph of al‘;? , bf:Il? versus-:— , with t as a parameter, is shown in

Figures 6.3.4-2a and 6.3.4-2b.

The components of stress in the radial and transverse directions are

_ _EaT [l1-@-v)q -t) Log p/adb?/r? - 1)
Irr ~ 2Llogb/a L[ ) + (1 -wJbZ/aZ+(1-w) A -¢t) Log (b/l‘)} 3

_ _EaT (1 - (- - 1) Loz b/a)] @2/c? +1
%90 T 2 Llogb/a 1- (A T -»ipZ/aZ v (1-¥) @ -1 - Log (b/l‘)}(‘!)

The variation of o and ¢__ - Tgg With r/a is shown in Fignre 6.3.4-3 for
V=20.3,bf/a=2 3 wandfort=0, 0.2, 0.5, 1, 2, 5 and ®mValues of o
be found by combining the given curves.

and

o M2y

Figure 6.3.4-4 shows the variation of O~ at r = a and r=b with b/a,with

c
t as a parameter. o6

The following special cases are considered:

If the extent of the plate is large compared with that of the hot spot (b/a large) .,

then
2
_ =~EaT _{1-¥){1-t)a ]
o = 1+ {5)
¥ 2 [ [(1 W)+ (1 -v)t] r’
2
_ -EaT 1-v)(1-t)a
‘80 T 2 [1‘[(1 V) + (1-V)t]r2 ] (6)
and
2
vop - 700 - Bar[ LAt o) %

faw+a)t]e

Note that the majority of the plate is subjected to bi-axial compression of magnitude
_Eg_’[_‘- . The stress difference has a maximum value obtained by substituting r=a into

Eq. (7) which varies with t as shown in Figure 6.3.4-5.

If b/a is near unity, the plate becomes a thin ring, resulting in

a_ = and
rr

r-a
Ier " Yoo EaT &)
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[V]r.o _ (1) ¢ [l-r(%f){zln (-%7-1 ]

e T 2tn(%){(|+r)(%)z+u-v)E((%)-l)u }

1.2

.O - _ t=0

&ﬂr:o
aeeT

b/a

FIGURE 6.3.4-2(a) RADIAL DISPLACEMENT AT BOUNDARY OF HOT SPOT (v =0.3)
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[uleze 2 {iI- (-1 0-1) 1 (§)3
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b/a

FIGURE 6.3.4-2(b) RADIAL DISPLACEMENT AT OUTER BOUNDARY OF PLATE (¥ = 0. 3)
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FIGURE 6.3. 4-3 STRESSES IN PLATE (v =0.3)
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K tis large, the stresses become

2,2
- __FEoT Log (b/a) (b"/r” - 1) . .
Cr = TTogbla [ 2nE - Log (b/r)] @®:
and ) 2,2 |
o0~ 2 LangTb7a [] ' LOb(b(://%_( el D) ey (b/"’]' @
% - 1)

With the usual conversions from plane stress to plane strain (Section 2), these are the
stresses in a pipe containing fluid at temperature I.

For t=1, the plate is of uniform thickness throughout and the stresees are
simplified to
2

2
EaT [ a b
g = 2_ - Lo ) 1
rr 2 Log b/a ob2 (r2 ) g b/ ] )
and
2 2
= EaT a b _ -
%6 = 2 logb/a [] - op2 ( 2 ' ]) Log (b/r) J 380!
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SECTION 7 - THERMO-ELASTIC ANALYSIS OF SHELLS

The deformations and stresses in shells which have axisymmetric geometry, loads,
and temperature distributions are presented. The case of thermal loading is shown to be
equivalent to a pressure loading which is proportional {o the local meridional temperature.

Solutions are also given for the case of edge loads and moments on the shell. The
deformations at the shell edges are then employed to calculate the forces required to enforce
the edge boundary conditions (compatibility). For the most part, the analysis cosiders
temperature distributions which are constant through the thickness of thin shells, although
special consideration is given to right-circular cylindrical shells having temperature varia-
tions through the thickness.

The following symbols are used throughout this section:

=

Inner and outer radii, respectively
Thickness; Thermal conductivity
Attenuation length

Radius

Reference radius

Time

Normal deflection

Distance along meridion

Eh3

12(1-v %

. R N

Flexural rigidity =

Young' s modulus

Edge loading functions

Horizontal force per unit of circumferential length

Value of H at a shell edge

Hoopring stiffness; Incremental stiffneas due to restrained ends; Thermal
diffusivity

Meridional length of a shell section

Bending moment per unit of length

Value of M at a shell edge

Normal force per unit of length

Surface traction (force per unit of area)

Meridional shear force, per unit of circumferential length, perpendicular to
shell wall

Radius of thin-walled cylinder

Temperature

Temperature rise above reference level

Weight

EnHm OWZF A/ mPEIEE O X E

Linear coefficient of thermal expansion
Radial (horizontal) deflection

&R
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A Vertical extension

€ Strain

n Value of Nx at a shell edge

9 Azimuthal“angle

v Poisson' s ratio

o Stress

¢ Angle between axis of revolution and the normal to the shell surface
Superscripts

! Quantities corresponding to a particular solution

o Quantities corresponding to the meridional loading membrane solution
Subscripts

e Resulting from edge loadings -

h Horizontal component

i,o Inner and outer

L2 Hoop component

X Meridional component

rr,00,zz Components in cylindrical coordinates

7.1 TRUNCATED CONICAL SHELLS

An approximate analysis is presented which may be regarded as adequately describing
the behavior of truncated conical shells (Figure 7.1-1) subjected to axisymmetric load and
temperature distributions (Reference 7-1) when the following conditions apply:

(1) The shell is thin walled (h<. 2r).

(2) The inclination angle ¢ is between 45° and 135° (preferably between 60° and
120°) and the shell is rather short,

(3) Deformations due to thermal and mechanieal loading are linear-elastic and
the principle of superposition may be employed.

For very flat conical shells (¢ between 30° and 45°) the analysis gives reliable re-
sults when the cone is analyzed in sections that are short (L<3.£), i.e., where the meridional
length L of each section analyzed is less than three times the so-called "attenuation length"
of the shell {Paragraph 7. 1. 1).

FIGURE 7.1-1 TRUNCATED CONICAL SHELL GEOMETRY
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7.1.1 Radial Loading Perpendicular to the Cone Axis

Any general axisymmetric loading can be resolved into radial and meridional com-
ponents as shown in Figures 7.1.1-1 (a) and (b). A shell analysis for the radial (horizontal)
component of the loading, based on the so-called hoopring approximation of shells, is pre-
sented. The analysis is valid when the conditions listed in Sub-section 7.1 apply.

A membrane analysis for the meridional loading component is presented in Paragraph
7.1.2. The solution of the conical shell problem for arbitrary axisymmetric loading is ob-
tained by superposing the hoopring solution for the radial component of the loading and the mem-
brane solution for meridional loading component.

FIGURE 7.1.1-1: {a) CONICAL SHELL WITH AXISYMMETRIC BUT
OTHERWISE ARBITRARY LOADING
() RADIAL AND MERIDIONAL 1.OAD COMPONENTS

Ph AND Px’ RESPECTIVELY

7.1.1.1 The Hoopring Approximation for Radial Loading

The axisymmetric shell under axisymmetric radial loading is visualized as an
assembly of beams in the meridional direction (Figure 7. 1. 1. 1-1(a)), supported by an elastic
foundation (hooprings) of stiffness

Eh sin® ¢ Ib/in @

]
r2 inz

K=
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FIGURE 7.1.1.1-1 CONICAL SHELL - HOOPRINGS AND MERIDIONAL BEAM STRIPS
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7.1.1.1  (Cont'd)

For this structural model, the differential equation for the radial deflection &'

becomes
x £ & (_r_ d_i“)+5.; r°Py @
r, 4 dxz r, dxz Eh
where Ph is the distributed radial (horizontal) loading (—192— ) and
in

7 - ./roh/sintp

&3 (1-v2

= .778 rohjsin & for v =0.3 , (3)

where " ,2 " is the so-called "attenuation length™ of the shell; it is a measure of the degree
to which the effects of seif-equilibrating edge loads die out away from the edges.

The internal shell loads, moments and deflections are expressed in terms of &' as

dé’ .
L} — - —
o = ax / sin ¢
2 3
M' = —_ D g_az_t /Sin ¢ . D = ﬂl_.z_
dx 12(1-¥)
r —
M9 = vy M
2
D d d”d’
wo- - -D_ 4 ( ) 4
r sin2 0} dx dx2 )
Q' = H'sin ¢
N}‘E = H' cos ¢
1 - '
Ne Ehé'/r ,
and the vertical defiection relative to the base is
X (N; -¥N'Q)
Al =fo —%h sin ¢ + ©' cos ¢ | dx ,

whgre the positive directions for the above quantities are as shown in Figure 7.1.1. 1-1 (b)
and (c).
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7.1, 1 {Cont'd)

It is convenient to find a particular solution for Eq. (2) where the loading is ex-~
pressed as a polynomial.

In general, this particular solution will not satisfy the boundary conditions at the
edges of the shell; i.e., the horizontal edge loads, moments or edge deflections and rotations
derived from the particular solution do not satisfy prescribed conditions. Additional horizontal
edge loads and moments must then be applied to the shell which, when superposed on the edge
loads and moments resulting from the particular solution, satisfy the prescribed boundary con-
ditions.

Following this approach, the loading term on the right side of Eq. (2) is expressed
by a polynomial, such that

p N

r k 2 N
—_ = Cl—=—) = ¢ . +Cc [=—])+C |=] +...+4C — . (5)
Eh k=0 k ro 0 1 T, 2 Ty N T,

A given meridional load distribution can be expressed in this manner by the method of Paragraph
4.1, 2,3, 1.

A particular solution of Eq. (2) can then be obtained in the form of a polynomial

k+2
o' = Z a.rJ,if k iseven
§=2,4,6,...... )
or k+2
51 = > ar) if k is odd , (6)
§=1,3,5,0 0. ... ]
where
k2 1
C - +1
k (ro)k
a. .o I k+1 kt2-j
I 2 . 2 . y 2
g = D T ) | D @ |75/ (r) (A) )
and j k, k-2, k-4,... 4, 2if k is even

o

j k, k-2, k-4,,.. 3, 1if k is odd
The quantity "A" is defined by

4r2
0

A=—2_
Licos ¢ (8)
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7.1.1.1  (Cont'd)

The particular solutions for &' are given innon-dimensional formin the following table

for monomials (Ck(r/ro)k) up to k =4,

TABLE 7.1.1,1-1

Particular Solutions for &', Corresponding to Monomial Radial Pressure Distributions

k | To'n 5'y
Eh roCk
o Lo |
1 Cl—;'; (%)3 _3(,£c!<‘>os¢ )4 ;r;
s ) ) e ) (5]
| ke G etteme) G m )
o | el | @) o) (=) w22 ) (2

M2 4 _ 2
Ck CZ r 3
0
and
22 1% %) @
Cz T 3A
(s

so that innon-dimensional form
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7.1.1,1  (Cont'd)

i = (&) - (Lo )2’

The solutions of Table 7.1.1, 1-1 are shown graphically in Figures 7.1.1,1-2
(a} and (b).

Once &' has been determined as above, the internal ghell loads, moments, and

deflections corresponding to this particular solution can be obtained from Egs, (4). The re-
sults in non-dimensional form are summarized in Table 7,.1.1, i-2.
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7.1.1,2 Solution for Edge Loading

When the conical shell is subject only to an end moment and end force asg in
Figure 7. 1. 1. 2-1, then for a shell of lateral length greater than three times the attenuation
length, it is permissible to consider the shell ag infinite. Assuming this condition to hold,
it is only necessary to satisfy the homogeneous form of Eq. (2) of Paragraph 7.1.1.1
(Ph = 0) subject to the boundary conditions

M(0) =7 H(0) =¥
M(o)= 0 H(o)= 0
H_+dH
e e
! ~ —_"g M, +dM,
5, \\—-l—— H,
@ M
e
—* A

n n

FIGURE 7.1.1.2-1 SELF-EQUILIBRATING LOADS AND MOMENTS M ANDXL AT A
CONICAL SHELL EDGE

Recognizing that these are short range edge effects, the variation of z-/r0 in the
region of significant stresses (i.e., r/r o N 1) are ignored. Under these conditions the solu-
tion of the edge loading problem may be written as
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7.1.1.2  (Cont'd)

A2 i :
e = ~Tgpi— [‘M.F3+#,€(sm¢)r'4]
9, = -% [?nF4+#,€(sin¢)Fl ]
(1)
M, = mEF,+ AL (sin ¢) F,
_ 2 7uFo
H, = > T + #FS
Mee = v Me
Qe = He sin ¢
Nxe = Hecosqb (2)
Ehé
N, = °
o T
© X Nx - VNG
A, = fo l:(_.._‘?__.i:._ﬁ__.,___.ﬁ)sm¢+eecos¢]dx,

F1 = JZ_ e) cos(f- %)
=R,

F2 = (e) sin E

- /T (3 - 1) ®
-x/4 X

F4 = (e) cos z

The ahove functions are damped sinysoidals which cause the boundary loads to attenuate
with distance from the edge as e™* £ They are plotted in Figure?7. 1. 1. 2-2 for the range

osz?‘ < 4.0,
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7.1.1.2 ({(Cont'd)

1.0

SN NORELT
n

FalX

FIGHRE 7.1.1.2-2 EDGE LOADING FUNCTIONS
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7.1.1,2 {Cont'd)

To illustrate the application of the preceding equations, consider the radial (hori-
zontal) loading problem for the conical shell of Figure 7.1.1, 2-3.

ry= 50"

30 1!

r 0=20

FIGURE 7.1.1.2-3 CONICAL SHELL UNDER UNIFORM RADIAL LOADING

The top and bottom edges of the shell are unrestrained (free), the radial pressure

is constant at Ph=500 &2 and
in
1b
- \a] —_— —_
r = 20 P, = 500 =,
in
= 1
b =1 E = 30 (10)6 psi
¢ =45 v = 0.30
Eh® 30(10)°(1)° 6
D =——"—5 = —(—}i—)—(—)—z = 2.75(10)°in -1b .
12(1-v) 12 (1- .3%)

Next, it is necessary to obtain the solution for the stresses and deflections in the
vicinity of the bottom of the shell. The first step is to obtain the particular solution.

From Eq. (5), since k =0,

roPh

® - °©

0 ]
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7.1.1.2  (Cont'd)

s0 that

Co = @)—(-5%9 = 3,33 (0% .
30 (10)%(1)

Then from Table 7.1.1,1-1,

% - ()
rOC0 T

4]
or 2
C.r -4 2
v 20 _ 3.33(10) r _ 2 -6 (a)
6' = T = 20 = 16.67 r° (10) .

Also, from Table 7.1, 1.1-2, for k=0,

©'tang _ (L)
C - r
\] o
- t i - '
roM sin ¢ ) ( roMe)(sin¢)=2
C0 D cos? ) vCyD cosqu
2 _. 2 2 2 2
A - 1 i
H r, sin b ) Nx r, sin” ¢ ) Q' r, sin ¢ _ 2
CO D 0033 o C0 D co:s4 b COD coss o) r/ro
N1
o _ r_
Cth. r,
Substituting the known quantities into the above expressions,
o =  -33.33r (10)"® radians
M = -4 b
in
M. = -19.4 210
in (b)
H = -64.7 ih_
r in
- r - 245.7 1b
Ny = Q' = r in
N! = 500 r Ib .
in
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7.1.1.2  {(Cont'd)

From the second and fourth expressions of (b), the particular solution yields moments and
horizontal loads at the shell edges (ro = 20", r, = 50") as shown in Figure 7.1, 1. 2-4(a).

To obtain the solution for the shell problem with free edges ())z= A= 0), superpose
on the particular solution given by expressions (a) and (b), the solution of the edge loading
problem for equal and opposite edge loads and moments (Figure 7. 1. 1. 2-4(b)).

In the edge loading problem,the attenuation length (Eq. (3) of Paragraph 7.1.1.1)
for the bottom edge of the shell is

_ 20(1) _ .
A= .18/ =5 = 415in

in-lb
in

and

. 64,8

(Positive directions are as shown in
Figure 7. 1.1, 2-1)

- b

M o= 324 -,

Thus, from Eqgs. (1},

2
5, - SEBIET [ gk p, 4415 (70 @20 F, |

2 (2. 75)(10)

4,15 4.15
o, = 7P [ (64.8) F,, +( > )(. 707) (3.24) F, ]
M, = 64.8F +3.24(4.15)(.700 F,
| _-2(84.8)
He 215 (.707) Fo* 324 Fg
or
5 =  —«(143.5x108F, -@1x10F
e : 3 Y Fy
e = - (97.8 x 10'6) F, -(7.15x 10'6) F
e : 4 * 1
M, = 648F +9.5F,
H, = -44.2F,+3.24F, ,
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7.1.1.2 (Cont'd)

- e

— 3,24 12 in
64. g in-lb
n
(a)
64, g in-lb
In
1b
1. 30 2.
[}
q
3,24 10

in
ib)

FIGURE 7.1.1.2-4 (a) EDGE FORCES AND MOMENTS CORRESPONDING TO THE
PARTICULAR SOLUTION
(b) EDGE LOADING EQUAL IN MAGNITUDE BUT OPPOSITE
IN DIRECTION TO THE PARTICULAR SOLUTION EDGE
LOADING
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7.1.1.2  (Cont'd)

and from Egs. (2) ,

=
n

19.5 Fl + 2.85 F2

ee

Q, = Nxe=31.2 F,+2.29 Fy )
1

Nee =-< (4300 F,+630F, ) .

where F, d =1,2,3,4) are functions of x/ A.

The final solution for the deflections and stresses in the vicinity of the bottom of the
shell is then obtained by adding expressions (a) and (b) to expressions (c} and (d).

The resuits for the meridional moment M =M' + Mé and the radial load H =H' + He
(in the vicinity of the base) are plotted in Figure 7.1.1.2-5,

The stresses can be obtained from the equations

N, 6M
=% * -3
x h
s o, Mo
e~ h T2

7.1.2 Meridionzl Loading - Membrane Analysis

An analysis for radial (horizontal) axisymmetric loading components was presented
in Paragraph 7.1.1. The present paragraph presents a membrane analysis for the meridional
components of the general axisymmetric loading (Figure 7. 1.2-1). Having done this, the pro-
blem of a general axisymmetric distributed loading can be treated by resolving the loading
into radial (horizontal) and meridional components; the effects of radial loading are then evalu-
ated by the hoopring approximation of Paragraph 7. 1.1 and the effects of meridional loadingare
evaluated by the following membrane analysis.
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X ="
_60 \/ ,/
/
! /
4
Y
-40

|/
. A

-10 / / K\

//

N

0

&)
e
=2}
00

10 12
X - Inches

FIGURE 7.1.1.2-5 MERIDIONAL MOMENT AND RADIAL LOAD MEASURED
FROM BASE OF THE SHELL SHOWN IN FIGURE 7.1.1, 2-4
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7.1.2 (Cont' d)

FIGURE 7.1.2-1 MERIDIONAL LOADING ON A CONICAL SHELL

For the membrane analysis, the moments M° and M°_ are considered negligible.
The meridional and radial equilibrium and the stress strain relat?ons then give the required.
internal loads and deflections as
)(x) Px -, 7 ]

r +r
5° = v o
. [
r

x
o _ o 1
Ny = ra. r[ r P, dx
o
o N; cos ¢ Y r+r, dP, (1)
o = 'E—h—(sinqs)_ Eh sin ¢ rPx+< 2 S
X NO
o _ X s o
A = o TR o ¢+ 6 cos¢ | dx
o _ o O _ 2O _ 10 _
Ng = Q' =M =M/ =H =0 ,

where r = r +Xxcos ¢ and superscript "o" refers to membrane effects.

If the membrane deflections and rotations as given by the above equations do not satisfy
prescribed conditions at the edges, then horizontal edge loads and restraining moments must
be applied such that the edge boundary conditions are satisfied. The effects of these edge load-
ings, discussed in Paragraph 7. 1.1, are then superposed on the me.abrane effects to give the
required solution,
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7.1.2 (Cont’ d)

The following illustrative problem demonstrates the computational techniques for
solution of a conical shell (Figure 7.1. 2-2) supporting a weight W. This solution requires
the determination of the stresses at the fixed bottom of the shell (a similar procedure can
be employed at the top).

W = 1,000,000 lb.

EREN RN

E = 30 x 10% ps1
v=.30

b=1"

N Y

FIGURE 7.1.2-2 CONICAL SHELL UNDER VERTICAL LOADING

Assume first that the bottom of the shell is unrestrained. Then for vertical
equilibrium, the statically determinate meridional membrane reaction at the base is

w _ 1,000,000 _ b

n=- Zarsing -~ 2m(20)(.866) - ~ 9290 p-
and the significant parameters are
3 6 .3
p = B - HERLLE o ra0’mm
12(1-v %) .
| o /20x1

L = .18 sing = 778 f Sggg = 3.74in
£ . —ﬂ—g = 1.37(10)°% _in%ﬁ_'
D 2. 74 (10)
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7.1.2 (Cont' d)

From the first and third of Eqs. (1), with Px = 0 and Nx =T, the membrane deflection and
slope at the base of the shell are '

o .30 (20) (9200)

v .
2 = % (xm)-= = .00184 in
Eh o” 30 (10)° (1)
M cosd _ _-9200 (.500) _
g° = 08 0 = = -. 000177 radians.
Eh  sin ¢ 30010)8(1)(. 866)

Since the base of the shell is fixed, an edge radial load, ## and moment 22must
be applied such ihat

(a)

The values of % and Prare then obtained by inverting the first two equations
from (1) of Paragraph 7.1.1. 2, where Ge and ee are given above by (a) and x = 0. This
leads to

0 250

D = 20 _
(£/D) LZ/D)sin ¢

and
(4] 4]
Mlsing=- 29+ 20,
&/D) * (4%/n)sin ¢
or
- -2(.000177) _ _ 2(.00184) _ in 1b
7 137 (10y®  1-37010) 5. 7o) 566) 1090 =5,
and
yle sin ¢ = 2{.0001736) + 4(.00(1;84) - 1920 1b
1, 37(10) 1. 37 (10) (3. 74){. 866)
_ 1920 L b
= G - 2w -
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7.1.2 (Cont' d)

The final results are now obtained by summing up the effects of membrane action
due to ), plus edge load action due to ¢ and ¥, or

1

(o]
Nx _Nx+Nx
e
N. = 0 +N
o ee
M = 0+M
e
Me= 0+vMe.
But from Eq. (1),
r
o_.0
Nx_ r

and from Egs. (1) and (2) of Paragraph 7.1.1.2,

- 2MmF
Nxe = Y 2 :;’:;’ + BF, cosg
-En 4% -
Nee = ~—r 3D sm:p( .»'IF3+ #jsincp F4 )
M, = JnF, + #Lsino F,.

where Fl ... F 4 are the known edge loading functions of E (Eqs. (3) of Paragraph 7.1. 1. 2).

Substituting the known values of % , 72, ¥, ¢ , r,, D, E, £ andh into the above, and
making use of the relation r = r, + X cos ¢, the following is obtained:

_ =9200
Nx—lm—o-) + 336 F2 + 296 F3

1
= 30 F, -
No = ToB( o) (3630 Fy - 6400 F,)

=
i

- 1090 Fl + 1920 F2

=
|

= - 330 F1+580 F2 .

The stresses at the extreme fibers are given by the expressions

Nx 6M N GMe
o = B & h2 and 0'9 = b + ")
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7.1.2 (Cont’d)
In particular, for the edge x=0 ,

F1=F3=F4=1

and
F, =0,

so that the stresses at the edge x = 0 become
- 15500 psi outer fiber
=-9200 + 296 + (-6550) =

lex =0 - 2400 psi inner fiber
-800 psi inner fiber

c-l = -2770 + (-1980) =

Olx =0 -4750psi outer fiber

In the present problem, the maximum stresses in the vicinity of the base occur at the edge
x = 0 as given above, This is usually the case when the functions F1 and F2 are of the opposite

sign. However, in problems where the F and F, terms appear with the same signs in the
moment expression, the location of maximum stress will often be at a small distance from the
edge, usually within £

7.1.3 Meridional Temperature Variation

The purpose of the following is to reduce the problem of a truncated conical shell
with a meridional temperature variation (Figure 7.1.3-1(a)) to an equivalent mechanical loading
problem, which can then be treated by the methods presented in Paragraph 7. 1.1 (Radial Load-
ing).

To this end, consider the shell to be sliced into elemental rings in which free thermal
expansions take place (Figure 7.1.3-1(b)). The free thermal strains in the meridional and radial
strains are

€ = ee=aAT. (1)

Under these conditions, since AT varies with the element, the edges of adjacent
rings do not match. To reestablish radial continuity of the rings, a radial distributed pressure

* -Eh _ -Eh
Ph——e——raAT (2)

is applied (Figure 7. 1. 3-1(c)) which negates the radial thermal expansion of each ring, but
causes an axial extension of
*

daA” = (1+v) exdxsin¢
= (1+¥) xAT dxsin¢
A* = (1+v) sm¢fx a ATdx. (3)
0
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(a) )

() &)

FIGURE 7.1.3-1 REDUCTION OF THERMAL PROBLEM TO EQUIVALENT
MECHANICAL LOADING PROBLEM
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7.1.3 (Cont' d)

*
Since the radial pressures Ph are really absent, a radial pressure Ph is

*
applied to the rejoined, continuous shell (Figure 7. 1.3-1(d)) which negates P, or

*
P +P =20

h h
so that
*
= - 4
Py P - (4)

The total stress in the shell is then obtained by superposition of the restoring
hoop forces

* *
N. = P

o h r= ~-Eh aAT (5)

*
produced by Ph in rejoining the rings, and the stress distribution which regults from the

radial, distributed pressure Ph in the continuous shell, where

_ Eh
Ph = T aAT . (6}

The solution of this latter problem was presented in Paragraph 7.1.1.

Thus, in summary, to obtain the solution for the truncated aonical shell with a
meridional temperature variation AT(x):

*
(1) Find the hoop force Ng from Eq. (5) and the axial extension A* from Eq. (3).
If the shell is free to elongate axially, then this latter quantity is of no interest,

(2) The total solution is obtained by superposing on the above effects the solution
of the radial (horizontal) loading problem (Paragraph 7.1.1) for Ph given by
Eq. (6).

7.2 APPROXIMATE SOLUTION FOR NON-CONICAL AXISYMMETRIC SHELLS

When an axisymmetric shell with axisymmetric loading is non-conical, the approxi-
mate solutions previously stated may still be used. The shell structure can most often be ap-
proximated by a series of separate conical shells (Figure 7.2-1(a)) and a spherical cap "O"

(the theory of shallow spherical caps is given in Reference 7-2)., The individual shell sections
can first be analyzed by the hoopring and membrane approximations of Sub-section 7.1, The
common edges of adjacent sections are then joined (Figure 7. 2-1(b)) by satisfying the equilib-
rium requirement that

My =M
A B )
m, =My
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(a)

! A
A
o
B
&
B
(b)

FIGURE 7.2-1 APPROXIMATION OF A NON-CONICAL SHELL BY A SERIES OF
CONICAL SECTIONS
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7.2  (Cont'd)
and the compatibility conditions

6, =6

A B

(2}

o o

A B’
The solution is thus obtained by superposition.

To prevent interaction of the effects of the edge loads and moments ¥t and % which
propagate from the upper and lower edges toward the center, the meridional length L of the
conical sections should be made larger than three times the "mean" attenuation length L of
the section. However, for reliable results in a very flat conical shell section (inclination
between 30° and 45°), the meridional length should be made very short ( L< 3,{). In this
case the interaction between upper and lower edges of the section cannot be ignored in analyz-
ing each element and the more complex analysis of Reference 7-3 must be employed.

7.3 CYLINDRICAL SHELLS

The following paragraphs are concerned with the analysis of cylindrical shells subject
to axisymmetric thermal and mechanical loads. A thermal analysis is presented in Paragraph
7. 3.1 for the combined problems of normal pressure loading and temperatures which vary in
the axial direction only, The analysis is rigorous within the customary approximations of thin
shell theory.

Paragraph 7. 3. 2 discusses the cases of thermal stresses in cylindrical shells due to
a variation of temperature through the thickness for both steady state and transient problems.

7.3.1 Cylindrical Shells With Axisymmetric Loading and Meridional Temperature Variation

The preceding analysis becomes much simpler for the special case of a cylindrical shell
(¢ =90°% r =R =constant). Within the customary shell theory approximations, the hoopring
and edge loading analysis of Paragraph 7.1.1 is rigorous for the thin-walled cylinder.

7.3.1.1 Hoopring Analysis

For the case of the cylinder, Eqs. (2) through (4) of Paragraph 7. 1. 1.1 become

14 d46'
4 dx4

+ §'=R [%;—1“ P (x) + aAT(x)] , (1)

where
£=+Rh___
4a1-v 9)

=_778 «/Rh {for¥ =.30).

Both normal axisymmetric pressure loading and axisymmetric temperature variation are in-
cluded on the right side of Eq. {1). The equations for the deflections, internal loads, and
moments become
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7.3.1.1  (Cont'd)

{__ds!
- e
2
a%s'
Mm=-p %8
dx
M= v
3 (2)
a’s'
t_ [ {a0
@=-m=-p L8
' 8! _
N=Eh | & - aaT
N' = 0,
X

and

x[ wNy
’=f -2 +aAT| dx,
0

where positive directions for the above quantities are as shown in Figures 7.1. 1, 1-1 (b) and

(c)

As in the case of conical shells, it is convenient to find a particular solution for
Eq. (1) where the pressure and thermal loading are expressed by a polynomial.

In general, this particular solution will not satisfy the boundary conditions at the
edges of the cylinder. As in the case of the conical shell, additional edge forces and edge
moments must be applied to the cylinder which,when superposed on the edge loads and moments
resulting from the particular solution, satisfy the prescribed boundary conditions.

Following this approach, the pressure and temperature terms on the right side
of Eq. (1) are expressed by a polynomial such that

RP il b4 k
X X 2 X N
=G*C R Cz(ﬁ) +"'+CN(E) :

A given meridional distribution can be expressed in this manner by the method of
Paragraph 4.1.2.3.1

The particular solutions for §' can then be obtained by substituting Eq. (3) into
Eq. (1) and solving the differential equation. The particular solutions for §' are given in
nondimensional form in Table 7. 3.1, 1-1 for monomials Ck(x/R)k up to k = 4.
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7.3.1.1  (Cont'd)
TABLE 7.3.1.1-1

Particular Solutions for §', Corresponding to Monomial Pressure Distributions

k BE . aaT|s'/CR

0 ¢, 1

1 c, x/R x/R

2 C, /R’ | (=/R)?

3 ¢y (</R)’ (x/R)®

4 c, /Rt | -6 (% )4

Once the 6' has been determined as above, the internal loads, moments, slopes
and axial deflections corresponding to this particular solution, can be obtained from Egs. (2).

7.3.1.2 Solution for Edge Loading

When the cylindrical shell is subjected only to an end moment and end load as
shown in Figure 7.3.1.2-1 and the longitudinal length of the shell is greater than three times
the attenuation length, the edge loading equations (Egs. (1) and (2) of Paragraph 7. 1.1, 2)
become

— g2
0 = gz—D—[hF3+ﬂ/£F4]
_Z 1
Ge = —]')"[77{F4+—2-#16F1]
(1)
M, = ThF +¥F,
-2
B, = Q=7 MF,+ #F,
and
M, = M v _
ee e NXe = 0
Ehé X
N_, = __e - -vN {(2)
Ge R Ae = f() [ v ©e ]dx

Eh
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where the Fk' 8 are those functions of x/# given by Eqs. (3) of Paragraph 7.1.1, 2,

O,/‘ Ve * Mo
' ‘\ — Qe"‘dQe
T0-=
' ' -— yi Q.
x M
h‘\ A" e
P <

FIGURE 7.3.1,2-1 SELF-EQUILIBRATING LOADS AND MOMENTS 3 AND %z AT
A CYLINDER EDGE

The following illustrative problem demonstrates the solution for a cylinder subjected
to an axisymmetric temperature distribution. The infinitely long cylinder of Figure
7.3.1.2-2 has a radius of R = a and is subjected to a temperature distribution given by

AT T' when x <0

0 when x> 0.

Find the deflections and stresses due to this thermal loading.

The boundary conditions are

5 =0 '
©=0 at x=+w
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(e
L
i

FIGURE 7.3.1.2-2 INFINITELY LONG CYLINDER WITH DISCONTINUOUS AXISYM-
METRIC TEMPERATURE DISTRIBUTION

To begin with, the continuous shell is cut into upper and lower portions at x = 0.

All the stresses and deflections in the upper half are identically zero (no loading or temper-
ature exists in the upper half),

The loading for the lower half is defined by
P=0

aAT =aT'.
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Therefore, from Table 7.3.1.1-1, aT' =C 0 and the particular solution of
Eq. (1) of Paragraph 7.3. 1.1 becomes

(this is easily seen to be simply
the thermal strain times the
cylinder radius)

6' = COR=aaT'

where the upper and lower halves are now denoted by + and -, respectively.

Since §' isa constant, Eqs. (2) of Paragraph 7.3.1.1 give

A =M' =M' =N' =N' =
6 =M' =M'y=N'_=N_-=o,

or the slope and stresses are identically zero everywhere in the unrestrained lower half of
the cylinder. Thus in this case, the particular solution satisfies the boundary conditions
identically.

In general, it may be stated that a AT variations which vary linearly with
Cartesian coordinates in the form

aAT = A+ Bx+ Cy + Dz
cause no stresses if the displacements are unrestrained externally.

Compatibility at the cut edges requires that
+

(=6 (0)

+ -

e (0) =6 (0) .
In other words,

+ + - -
8' () +5,(0)=8" (0)+5 (0)

+ + - -
8" (0)+6,(0)=9' (0)+8b, (0)

but

+

' (0)=0

6' (0) =aoT

+ —

8' (0)=0' (0)=0,
therefore

+ —
5, (0)=2aT" +5_(0)

+
Be (0)= 6, {0) .
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Edge loads and moments must be applied at the cut (Figure 7. 3. 1. 2-3) to satisfy
the above conditions.

4
]
»
{Ll

FIGURE 7.3,1.2-3 HORIZONTAL LOADS AND MOMENTS AT CUT EDGES

Expressing the edge deflections and slopes by Eqs. (1) with

F (0)=F4(0)=F, (0) =1

gives

‘%[h+ﬁ£]=aa'r' - %— [7?1-511‘ ]

-Ee ) - £ [ £x).
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Solution of the above yields

and for x <0,

b o () [1d e, (3)]

The slopes, moments and hoop forces can be obtained in a similar manner from
Eqs. (1) and (2). The stresses are then obtained from

6M
o =4 ==
X hz
N
- _6 6y M i _
oe— h + h2 (Since Me =y M).

The resulting radial deflection § and stresses % g at extreme fibers are
plotted in Figure 7.3.1.2-4,

7.3.2 Cylindrical Shells with Temperature Gradient Through the Thickness

Design nomographs and analysis are presented for the solution of the steady state
thermal stress problem. Cylinders with free and completely fixed ends are both considered.

The transient problem for long unrestrained solid and hollow cylinders follows.
Tables and curves are given for the determination of the stresses in nondimensional form,

7.3.2.1 Cylindrical Tube - Steady State Heat Flow in Radial Direction

The temperature distribution in the instance of a steady state radial temperature
distribution in a cylindrical tube (Figure 7. 3. 2, 1-1(a}) is

b
T =(T. - _I?E@+T
(T, - T,) o (1)

()
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(@)

st 5

ZZ

IT

B 00 L>T

(b)

FIGURE 7.3.2.1-1: (a) SHELL GEOMETRY
(&) VARIATION OF STRESSES THROUGH THE CYLINDER THICKNESS
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where Ti and To are the temperatures in theinside (r=a) and outside (r =b), respectively,

The stress components in the radial, tangential, and longitudinal directions
are as follows for the case when the tube is completely unrestrained.

rr _ 2(l-v)iog(b/a) ET b2 2 € a
Ea(T, ~ T ) 2 2
- i_ o Clogl - B b” b
%00 = 2(1v)iogb/a) [ 1-log 22 (1+ ® ) log ] (3)
Eo(T, - T ) 2
_ i 0 b __2a b
92z ~ 2(1-v)log(b/a) [ 1-2logy, o2 o2 log 3 ] ‘ (4)

NOTE: o =0

+ : 6. _max, and o
ZZ rr “ee’ ZZ an S

o max. occurs at r =b.

The results given in Eqs. (2) through {4) are accurate away from the ends of the
tube since the boundary conditions of zero traction at the ends are not satisfied pointwise.
Instead, the average value of the normal stress is zero.

The character of the stress distribution in a thick-walled tube in steady heat con-
duction with temperature varying only radially (corresponding to Eqs. (2) through (4)) is shown
in Figure 7.3, 2. 1-1(b).

The following tabulation gives the signs of the stresses for internal heating

(T;>T,):
Stress Radius Kind of Stress
Tangential Inside Compression
Tangential Outside Tension
Longitudinal Inside Compression
Loengitudinal QOutside Tension
Radial All Radii Compression

For external heating, T o >Ti, the signs of all the stresses
are changed.

Figures 7. 3. 2. 1-2 through 5 are alignment charts giving values of the above stress
components in terms of the geometry and the physical constants for one degree fahrenheit dif-
ferential between the outside and inside surfaces. For a temperature difference of T degrees
Fahrenheit, results found by the nomograph must be multiplied by T.
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RATIO b/e

FIGURE 7.3.2,1-3
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Stressformulas for unrestrained thin-walled cylindrical tubes are now presented.
If the thickness of the wall "b-a" is small in comparison with the inner radius "a" of the
cylinder, thenl§= 1+ b-a_ where b—aa «, Therefore, log 2 = log (1 +b;a)a-; b-a

a

so that for a thin-walled unrestrained cylindrical tube the stress at the boundaries are given
approximately by

“EalT; - Ty b-a
Coplra = Tzzdr=a™ 21 -v) ( 1+ E)
Ea(T, - T ) ®)
_ _ @ i o b-a
(Coehrn = ©@pzhy™ 2(1-v) ( - E) ’

where o 18 negligible,

It i now assumed that end displacement is completely prevented. This condition
is exemplified by a cylinder with completely restrained ends. The formulas for the radial
and tangential stress components are the same as for the unrestrained case. The axial stress
is modified by the stress necessary to prevent axial displacements. The additional stress HKn
necessary to prevent axial displacements is

K “Ea(T; - T) ) ( 2a> ) log D
= - og 2 |=~EaT (6)
2 log E- b2_a2 a o

and the total stress is o, = K+ - where O is given by Eq. (4).

z |Tota1

7.3.2.2 Transient Thermal Stresses in Circular Cylinders

This paragraph presents the determination of transient thermal stresses in long
unrestrained cylinders subject to temperatures which vary only with the radial coordinate and
the time t , and where inertia effects are ignored.

For solid cylinders, the following results are presented:

The radial and tangential stresses for a solid cylinder {(Refarence 7-4) are

a T
_ Ea 1 1
oL T l:——z f rTdr - Ly f err] (1)
a 0 T o
a r
_ Ee] 1 1 _
%50~ iv [—az f rTdr + —5- f rTdr T] , (2)

o r o]

where a is the radius of the cylinder, E is Young's Modulus, » Poisson' s Ratio, ¢ the
coefficient of linear expansion of the solid, and T its temperature at radius .
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Since the resultant of the normal forces over the cross section of the cylinder is
zero, then

o =g _+0C
Z7 rr S1s]

The direct application of Eqs. (1) and (2) would require a knowledge of the temperature dis-
tribution. The heat transfer problem from which the temperature distribution is determined
will not be considered here.

The temperature distributions and the non-dimensional stresses for the following
transient problem are found in Reference 7-5.

Case I Thermal stress in the cylinder oSr<a initially at constant temperature T0
whose surface is kept at temperature T1 for t>o,

Tables 7.3.2.2-1 and 7. 3. 2. 2-2 give values of -d-v)o,., and 17V )9%¢

E a(T0 - Tl) Ea(To-Tl)
as functions of the dimensionless parameters r/a and % where K is the thermal

diffusivity of the material and is defined by a

_. (thermal conductivity)
~ (mass density) (specific heat)

Case II: Thermal stresses in the cylinder o< r <a, initially at uniform temperature T0
with heat transfer between the cylinder and a medium at temperature T1 for t>o. i

It is assumed that the normal gradient of temperature at the surface is directly
proportional to the difference between the surface temperature andthe medium. This relation
is expressed by

[Z%* h(T_Tl)] =0 (3)
r=a

. oT
NOTES: (1) h =0 corresponds to no heat transfer (complete insulation), Br lr=o0 = 0

(2) h = corresponds to infinite heat transfer, Ti r=a= T (Case I)

Therefore, the ﬁ%sults will involve three dimensionless parameters which are )
most conveniently taken as =5 § and ah, In Figures 7.3, 2,2-1 and 7. 3. 2. 2-2, respectively,
a

~Q-v)o,, (1-#)ogq Kt
- ———— 3 = f
the values of Ea(To = Tl) and Ea(To“Tl) ag functions of az are shown for
ah = 5 and values of E ranging from 0 to 1, 0.
; \ e <r. Kb
To illustrate the way in which the stresses vary with ah, the variation with 5

. . . a
of the surface tangential stress, o for £ = 1, is shown in Figure 7. 3. 2. 2-3 for ah

values of 0.2, 0.5, 1, 2, 5, 10, 28%and o?
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For hollow cylinders, the solution of the thermal stresses is more complicated
than that of solid cylinders because of the additional (inner) boundary. A parametric study
becomes very unwieldy. As an example, a particular case of a hollow cylinder will be con-
sidered in which the outer surface {r=b) is kept at an elevated temperature T1 for t >0 and

there is no loss of heat from the inner surface % = 0. Figure 7.3.2.2-4 presents
r=a
1-¥ )9 o5] 2
the ordinate FoT against Kt/a“ for values 0, 0.25, 0.5, and 0.75 of the ratio
1

a/b. It appears that the values for the solid cylinder are reasonable approximations to those
for the hollow cylinder only in the case of fairly thick-walled cylinders.
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SECTION 8 - STRUCTURAL ASSEMBLIES

The structural elements analyzed in this Manual are, in almost all cases, integral
components of a complete structural assembly. The beams analyzed in Section 4, for
example, are usually components of a larger frame or beam-like structure; the purely
monocoque shells analyzed in Section 7 are components of a larger semimonocoque gtiffened
structure.

In all such cases the boundaries or edges of each structural subsystem are subject to
the restraint of adjacent structure. Since the over-all structure is an integral assembly, the
deflections at the boundaries of adjacent structural components must be compatible with each
other. This section considers the mutual interaction of these components, thereby providing
the tools necessary for the over-all strucfural analysis.

The following symhbols are used throughout this section:

f Influence coefficient
h Thickness
r Radial coordinate .
Eh°
D Flexural rigidity = ————
12(1-v")
E Young's modulus
H Interaction force per unit of length
M Interaction moment per unit of length
P Uniform normal pressure on bulkhead
o Coefficient of linear thermal expansion
] Radial deflection
o Rotation _
¢ Angle between the normal to shell surface and axis of revolution
AT Elevated temperature with respect to base
Subscripts
1,2 Shells

B Bulkhead
H. M Due to edge interaction loads and moments, respectively.

WADD TR 60-517 8.2



8.1 SHELLS OF REVOLUTION WITH BULKHEADS

This sub-section considers the interaction of shells of revolution, under axi-
symmetric loading (mechanical and thermal), with transverse circular bulkheads lying
perpendicular to the axis of revolution (Figure 8.1-1(a)).

For general shells of revolution, the analysis is approximate, giving reliable
results within the limitations spelled out in Sub-sections 7.1 and 7.2. For cylindrical
shells, the analysis is rigorous according to thin shell theory.

In order to determine the interaction stresses at the junction of shell and bulk-
head components, the deflections and slopes at the unjoined shell and bulkhead edges are
firat determined (Figure 8.1-1()).

The deflections and slopes §!, &', and e' 9'2 at the unjoined shell edges, due
to axisymmetric thermal and mecna.nlcal l%ads can be determined by the methods of
Section 7. The bulkhead is considered to be a circular plate (with or without a concentric
hole), Iis edge slope and deflection, eh and & i,’, for radially symmetric transverse load

may be determined from a plate bending analysis. Thus, as shown by Timoskenko, * for a
uniformly loaded solid circular plate free to rotate at the outer edges (Figure 8.1-2),

B 8D ’ (1)

and G'BNO.

After the unjoined edge deflections have been determined as above, edge moments
and loads are applied (Figure 8.1-1(¢)), such that the radialdeflections and changes in edge
slopes of the shell components and the bulkhead are all equal, and the joint is in equilibrium.
These conditions require that

6i+6'1'=6'3+63'3=6:2+65 2)
- = 1 "
6'1 +e'i— eh +e'B 92+92 ’
and
M1+MB+M2—0
)
H1 +HB+H2=0 .

where the double primes refer to the effects of the edge interaction loads (M, H). However,
the edge deflections and rotations due to the interaction loads can be written as

6y =ty By ~fHy M

o]
-z
|

= fig H iy M, o 4

* Timoskenko, S., "Theory of Plates and Shells, " McGraw-Hill Book Co., Inc.
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8.1 (Cont'd)

Bulkhead or Ring

(a) Integral Shells and Bulkhead

{b) Deflections of Unjoined Shell and Bulkhead Edges

H

(c) Interaction Loads at Joined Shell and Bulkhead Edges

FIGURE 8.1-1 DEFLECTIONS, LOADS AND MOMENTS AT A SHELL AND
BULKHEAD JUNCTION
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8.1 (Cont'd)

1l
]

1 1] 1
Oy = fop Hy + fHy M

60 = Igy " Hp

"o .
s = 'am M -

I
=
=

where, from Paragraph 7.1.1, for v = .30

2,571 . 1/2 , r 3/2
i1 E (8in ¢.) ( b, )
f..=f = 8.305 —

M~ g T 2

1
o o 8.9 /T
1M Eh13 sin ¢,

_ 2.571 1/2 ,r 3/2
by = T €T G2
£, =f,. = - 3.305 %
2M  2H % Eh2
2
8.496 /rh,

fl =
2M 3 s
Eh,, - sin ¢,

FIGURE 8.1-2 EDGE ROTATION OF SOLID CIRCULAR
BULKHEAD DUE TO UNIFORM PRESSURE
LOADING
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8.1 (Cont'd)

and from Timoshenko* and Figure 8.1-1(a),

-2 -
£o=| —=2 -.30] ==
BH z 2 - ER

L r“-r N B

b

P ) ©)
f" = r_:.._b_ - 30 12r
BM | 2 2| - 3

X b 1 Ehg

Inserting Egs. @) into (2) and (3) and combining equations, results in

€ g g By

Epm) Hy
Gy

+ 0

and

+

<+

+

Cp) By + G My o0 =65-93)
Uon * Ty Hp 0 oy My = (0p-0y)
()
0 tlm e My ¢ gy My = Op-9)
' 1 = -9t
G Hp gy My oyt P pa My = O~ )
Mp = -0 + My)
= - @®)
Hy M, + Hy) .

Thus, once the deflections and slopes at the unjoined shell and bulkhead edges
{corresponding to the right side of Eqs. (7)) are determined, (7) and (8) provide six
algebraic simultaneous equations for the determination of the three interaction forces
(Hl’ Hz, HB) and moments (Ml, MZ’ MB).

8.2

DETERMINATION OF INTERACTION FORCES AND MOMENTS

The long cylinder shown in Figure 8.2-1 is heated fo a uniform temperature of
AT, while the bulkheads remain unheated (ATB =0). Find the restraining forces at the
interior and end bulkheads.

* Timoshenko, S., "Theory of Plates and Shells, ' McGraw-Hill Book Co., Inc.
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8.2 (Cont'd)

Interior
h l / Bulkhead
End
Bulkhead
r

by Ly

FIGURE 8.2-1 LONG CYLINDER WITH INTERIOR AND END BULKHEADS

8.2.1 Solution for the Interior Bulkhead (Figure 8.2.1-1)

The free expansions due to the uniform temperature elevation are

]

6 i é ra AT
T = | - [ — | -
'SB 91 62 GB 0

Also from the symmetry of the problem

H1=H2= -HB/2=H

Substituting the above in Eqs. (7) of Paragraph 8.1 yields the independent equations
(le + 2fBH) H + ct’lM) M= - raAT

G B+ €y M =0

Solving the above equations results in
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8.2.1 (Cont'd)

i | 0
fim

where the influence coefficients f,f' are determined from Eqgs. (5) and (6) of Paragraph 8. 1.

2H

2H

FIGURE §.2.1-1 INTERIOR BULKEEAD

8.2.2 Solution for the External Bulkhead (Figure 8.2.2-1)

As in the case of the interior bulkhead,
di = raAT

= - |
(Si,’-e'l——OB 0

Also, for equilibrium of the joint (Eqs. (8) of Paragraph 8, 1)
M, = -M, =M

1 B

H, = -Hp =H

Substituting the above in Eqs. (7) of Paragraph 8.1 yields the independent equations
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from which

and
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€g gy H + 0 M =raAT

g H + €p *Epy) M =0 |

H = ~-Ta AT
l:ﬁ ety - v (1m
1 1
18 " UBH T @ i
~f1
_ 1H
M= g 5
IM ~ BM

H H

FIGURE 8.2.2-1 EXTERNAL BULKHEAD

8.9






SECTION 9

STABILITY OF STRUCTURES

WADD TR 60-517 9.0






SECTION 9

STABILITY OF STRUCTURES

TABLE OF CONTENTS

Paragraph Title

9 Stability of Structures

9.1 Stability Criteria

g8.1.1 Stability by Eigenvectors

9.1.1.1 Euler Equilibrium Equation

9.1.1.2 Buckling Load

9.1.2 Stability by Virtual Work

9.1.3 Properties of Eigenvectors (Deflection Modes) and Eigenvalues
(Critical Loads)

9.1.4 Approximate Methods of Determining Stability

9.1.4.1 Single Functions

9.1.4.1.1 Upper Bound

9.1.4.1.2 Lower Bound

9.1.4.2 Multiple Functions

8.1.5 Shear Energies

9.1.6 Plasticity and Eccentricity

9.1.7 Temperature

9.2 Non-Dimensional Buckling Curves
9.2.1 Non-Dimensional Stability

9.3 Curved Plates and Shells

9.4 References

WADD TR 60-517 9.1

.11

.14

.15
.18
.18
.18
.18
.22
.26
.29
.31
.32
.32
.48
.50



SECTION 9 - STABILITY OF STRUCTURES

The solution of the structural problem requires the determination of the displacement
due to a given loading. As the magnitude of compressive loading is increased a limiting
value is approached at which a small lateral force will produce considerable lateral deflec-
tion, This limiting value is called a critical (uckling) load at which the structure becomes
metastable. This section is concerned with a discussion of the criteria of stability and the
characteristic deformation modes of structures {eigenvectors). Methods to calculate the
buckling load from the eigenvectors or to approximate the buckling load by determining upper
and lower bounds are presented. The effect of neglecting various flexibilities is discussed
and formulations are presented. The effects of eccentricity, plasticity and temperature are
discussed qualitatively. Non-dimensional buckling curves and examples which include the
effects of uniform temperature and creep are also presented.

The following symbols are used throughout this section:

Coefficients of eigenvectors defining the lateral deflection

Length of half wave of buckle (length of pin-connected column, width of plate)
Distance from shear center to line of action of transverse shear V.
Deflection pattern or eigenvector; Average thickness of sandwich faces
Thickness of plate; Centroidal thickness of sandwich plate

Thickness of sandwich core

Stability constant

Length of column

Virtual internal moment due f{o a unit virtual force
Lateral load intensity

Distance from shear center

Thickness of plate; Time

Displacement

Eigenvector

w Lateral displacement
o Maximum lateral displacement; Initial approximation of lateral displacement

ﬁﬁ""‘lrﬂg"‘wnﬂ"ﬂ‘-""@ﬂ‘._p

e

] Slope in j direction

w .. Change of slope fnegative of curvature)
X,¥,Z Distances along coordinate axes

Area; Linear operator

v Effective transverse shear area

Constant coefficient
Stiffness of isotropic plate
Stiffness associated with the moment Mij

Initial (Young's) modulus
Effective stability modulus

B b

€-aT
[+

Tangent modulus = d € /do

Secant modulus =

H #H HH ODOUOQ

H ®w " e
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F Generalized force or buckling load
Fcr Buckling load
FM Buckling load considering bending energy only
FV Buckling load considering transverse shear energy only
FQ Buckling load considering torsional energy only
GS Secant shear modulus
Gc Shear modulus of core
I Moment of inertia of cross section
K Non-dimensional stability constant
L Potential energy
L* Complementary energy . _
Mij Moment on ith plane in the j x z direction
Ni j Load on Ith plane and in jth direction
Q Torque acting on crosg section
T Temperature
U Change in strain energy due to a virtual displacement
sU* Change in complementary strain energy due to a virtual force
v Transverse shear load on cross section; Volume
5W Change in potential energy of external loads due to a virtual displacement
SW* Change in potential energy of external displacements due to a virtual force
A‘VG Transverse shear stiffness of cross section = f ESdAV
EI Bending stiffness of cross section = f Esysz
EA Axdal stiffness of cross section = ESdA
JG Torsional stiffness of cross section = f GS rsz
o Coefficient of linear thermal expansion
61. Kronecker delta =1ifi =]

) =01f 1 #]
€ Strain
€ ij Strain component associated with stress component Uij
€, Strain due to stresses
K] Ratio of bending stiffness
K Curvature - rate of change of slope
7\1 Eigenvalue associated with eigenvector U and buckling load Fi
i Constant - Lagrangian multiplier
v Poisson' s ratio EI
p Radius of gyration of cross seetion = /——

EA

o Stress h th
0y Stressoni  plane inj  direction
T] Shear stress
cr Subscript denoting critical value
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9.1 STABILITY CRITERIA

A structure will defoerm under given loading and boundary conditions in such a manner
as to make the potential energy stationary. As the load is increased, the structure deforms
more and more into one of its characteristic buckling patterns. The buckling pattern for
which the strain energy is a minimum for given boundary displacements is called the lowest
eigenvector of the structure and corresponds to the lowest buckling load (or eigenvalue).
More generally, the eigenvectors are those deformation patterns for which the potential
energy is stationary with respect to an arbitrary virtual displacement. Consequently, the
eigenvectors also satisfy the Euler Equilibrium Equation. This equation is obtained by a
calculus of variation procedure which makes the potential energy stationary.

Any initial eccentricities of the structure can be expressed as the sum of eigenvectors.

As the load is applied and increased, the magnitudes of the eigenvectors (which define the dis-
placement of the structure) will increase. The percentage increase (of the order of 1 )
1—]?‘71"i

is greatest for the smallest eigenvector (corresponding to the smallest characteristic load Fi= Fl)
and becomes exceedingly large ags F —» Fl' Thus the structure will tend to buckle in the
lowest eigenvector mode no matter what initial eccentricities exist. (The eccentricity can

even be in the form of a small lateral disturbance to a straight column. )

It is possible to investigate the stability of a structure by examining the change in the
potential energy (6L = 6 U - §W), defined in Paragraph 1.7.2. 1, due to an arbitrary virtual
displacement which satisfies restraining displacement boundary conditions.

Consider an eccentric column (Figure 9, 1-1{(a)) which i{s in stable equilibrium under the
force and displacement systems Fl’ u,. For an arbitrary virtual displacement du,, the re-

ciprocal theorem (Paragraph 1.7. 1) ylelds
5L=0. (1a)

Further, since the column is in a state of stable equilibrium, then according to the minimum
potential energy theorem (Paragraph 1. 7. 2. 3),

s2L> 0. (1b)
When the load on the column becomes equal to the so-called buckling load ¥ __ (Figure 9. 1-1(b)),

the column deflections can vary over a wide range with only small variations of this load. To
all intents and purposes, the deflections u, are arbitrary and the column is considered to be

in a state of metastable equilibrium, for which
sL=62L=0 . (1c)
Another form of metastable equilibrium, involving the complementary potential, occurs
if a stop is placed under one end of the column {(Figure 9. 1-1{c). In this case, additionzl load
is absorbed by the stop, and the forces Fa for a given deflection ug are abitrary, with the re-
sult that
SL* =621*%=0. (1d)

If the column is initially straight (actually, this can ﬁever be achieved) and a load F 4 greater
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9.1 (Cont'd)

than Fcr is applied (Figure 9. 1-1(d)), 2 small lateral displacement u 4 will cause the

column to buckle. The straight column, in this case, is considered to be in a state of un-
stable equilibrium, for which

6L =0
le
] 2L <0. (te)
The criterla of stability are summarized below,
2
L =0;5°L>0 (2)
Stable Equilibrium 5
SL* =0; 5 “L*>0 (3)
Metastable Equilibrium:
(a) Arbitrary Displacement 6L =45 2 L=0 (4)
{(b) Arbitrary Forces SL* =§ 2 L*=0 (5)

Unstable Equilibrium

2
- Deflections 6L=0;"L<0

) (6)

2 -
where 5L, § L are varlations due to virtual displacements su, and §L*, & 2L* are variations
due to virtual forces (or stresses) § F,

Employing Eq. (4) will result in the solution for the buckling load provided u is the
eigenvector. If u is not the eigenvector, then employing Eq. (4) results in a buckling load
for a siiffer structure (6 U expressed in terms of displacements) which is higher than the
buckling load of the actual structure. Employing Eq. (5) results in a displacement for a more
flexible structure (5§ U* expressed in terms of the forces) which can be utilized to obtain a
buckling load lower than that of the actual structure.

The first variation (6 L) can be viewed as the difference in potential energy between a
system defined by the true forces and displacements and a system defined by the true forces
but assumed displacement (which is the true one modified by a virtual displacement). The
variation (6 L) is zero (and the potential is stationary) when the assumed displacement happens
to be the true displacement. The second variation (52L) can similarly be envisioned as the
change in potential for the system of the true loads and the assumed displacements when sub-
Jected to a similar virtual displacement. Thus the stability of a structure can be investigated
by assuming a deflection pattern and evaluating the change in potential of such a system when
subjected to a virtual displacement having the same pattern as the assumed displacement. In
such a case, this change in potential energy 6L is in effect a second variation upon the true
potential energy. Similar arguments can be applied to the complementary potential (L*).

The conditions for metastable equilibrium as defined by Eqs. (4) and (5) can be redefined
as

§U =6W (7)

SU*=5W*, (8)
where § U is in terms of the assumed strain pattern and & U* is in terms of the assumed stress
pattern.
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9.1 (Cont'd)

FZ - Fcr
F1
{ ;
|I
,/ 6112 —-‘\
Gul ]
\
L N L 1
uw.F u2+6 Uy, F
+u,, F t 22
b S Rib |
uy Fy
u u
{(a) Stable Equilibrium { 6 L = 0 (b) Metastable Eqmllbrlum—Undefmed Dis-
521 > 0 placements {6L = 82L = 0}
F.. F +46F
3 3 4 > Fcr
/ II
_.." u L o u4 —f
\ 8 \
\ \
$ F .0 {
F,, 6u
L* u,, F ’ 4
3’3 u3, F3 + & F3
F u.
(c) Metastable Equllibnum Undefined Forces (d) Unstable Equilibrium-Straight Column

{GL* -~ 521% = 0} {62L ; 0}

FIGURE 9.1-1 STABILITY OF COLUMNS
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9.1.1 Stability By Eigenvectors

The Euler Equilibrium Equation, which expresses the internal equilibrium of the
structure in terms of the displacements, is obtained by determining the condition that the
displacements must satisfy in order to make the potential energy stationary, The method
of obtaining the Euler Equation is shown in Paragraph 9.1,1,1, The solutions to these equa-
tions are the possible deflection modes of the structure and are called eigenvectors.

The solution of the Euler Equilibrium Equation for the eigenvectors "u " contains an
eigenvalue " JLI“ which is a function of the buckling load. Techniques for obtalmng the buck-
ling load are "shown in Paragraph 9. 1. 1. 2. The buckling load depends upon the boundary
conditions (types of supports, aspect ratic) and the loading conditions. The exact solutionfor
the eigenvalues can only be obtained in a limited number of cases in which the exact solution
of the Euler Equilibrium Equation can be obiained. Solutions for rectangular plates with
various types of boundary conditions and loadings are shown in Figures 2 and 14 to 26 of Re~
ference 9-1. These solutions as well as solutions for other geometries and loadings can be
found throughout the literature; for example References 9-2 and 9-3. This information should
be utilized In a manner described in Sub-section 9. 2 to determine the buckling stress.

In general the solutions are quite complex, and approximate methods are attempted
which place upper and lower bounds upon the buckling load. Properties of the eigenvectors and
the eigenvalues are described in Paragraph 9.1.3. Some approximate methods and the effects
of these approximations will be discussed in Paragraph 9.1.4 These methods utilize the energy
principles discussed previously.

9.1. 1,1 Euler Equilibrium Equation

The method for obtaining the equilibrium equation for a rectangular plate, with trans-
verse shear energy neglected, is indicated in the following. The potential is minimized by a
function defined by the equilibrium equation. Symbols are defined below and in Figure9, 1, 1,11,

Stress component acting on ith plane (plane perpendicular to ith direction) and

;.
1} acting in j direction
Tex Normal stress on x plane acting in x direction
ny Shear siress on x plane acting in y direction
eij Strain component associated with stress component crﬁ
N1 i Load per unit of length acting on ith plane and in jﬂ:l direction
Nxx Normal load per unit of length on x plane and in x direction
ny Shear load per unit of length on x plane and In y direction
w Deflection in z direction
q Lateral load per unit of area in z direction -
Mij Moment per unit of length action on ith plane in the j x z direction
Mxx Moment per unit of length acting on x plane andin x X z = -y direction,
causes rotation (bending) about the y axis
M Moment per unit of length acting on x plane and in y x z = x direction;
v causes rotation (twist) about the x axis
2
Negative of curvature = .
V.13 ga a1 5)
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9.1.1.1 (Cont'd)

- b
z
1F‘"_I/ — y
//q E“:N
aorl /// ::yy

N.. = Load on i plane in j direction

N,
‘ X Plane »
z |~y Plane
! o
M X
M,x ﬁ c
yy
;é»-ﬁ Txy J ot
)' ‘
X Plane —/ &
-y

FIGURE 9.1.1.1-1 LOADS ON PLATE
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9.1, 1.1 (Cont'd)

Dij Stiffness associated with the moment Mij and curvature w

,1
N ]
M
D = — XX
XX w + yw
k) XX yYY
M . .
D _ yy > For isotropic plate
+
¥y Yoy VW xx Eg 0
D_=D =D =D= 2" dz
M xx ¥y d 1-v 2
ny (1-v)w )
v Poisson's ratio
ES Secant modulus

The potential is defined for non-linear elastic material in order to obtain a more
general equilibrium equation:

eij
L=U—W=££ o de dv - FEY (1a)
L= fw’ij M.dw )+ 1 N.w. w.-qw dxd (1b)
B 0 It T VS TS B ¥
or

w w
_ , XX , Xy B
L—ﬁfo Dxx(w,xx+v W’yy)d(w,m)+2j(; D _(1 V)W. dw’

w
¥Y 1 2
+f DYY (w,yy+ yw,xx)d(w’yy)+2 Nxxw,x (1c}
0

1 2 }
5 - dy.
+ nyw,xw,y+ 2Nyyw,y qw ¢ dxdy

From the calculus of variations, if

L= f ¢ dxdy is stationary, then

2
- p~ 8 3 3 3 [® i 00
[ow-0- -2 (33“ ) W(ﬁ—) - (Bw ) +

¥ o (2)
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9.1,1.1 (Cont'd)

2 2 n

9 30 L2 (8 )\ )t 2. 8 . (2)
* Bxoy (awxy) oy2 (W ol W oax ..

Therefore,

0= -a-(N, W ) - (nyw,y),x- Moy W )y ™ Noy Yoy +[Dxx W xtV w,yy)] | xx

: (3a)
- + D (w +ty W )] .

* [2(1 "')nyw,xy],xy [ vy vy xx' ] yy

Let
I = -q=Ilateral load
= - - N - -—

T W ¥, x " Py Wy x ™ N w ) g = W w )y

= lateral contribution of in-plane loads when plate deforms (first derivative of shear),
where
a = -Nxxw,xx -2 nyw,xy - Nyyw,yy

= contribution for non-changing in~plane loads
Ib = -w _(N + N y-w (N + N )

XXX Xy, ¥ Y ¥YY Xy.X

= contribution for changing in-plane loads

m = M + 2M +M
XX, XX Xy,Xy ¥Yy.¥Yy

= effects of lateral contribution of moment, (second derivative of moment),
where
INna = D__w + 2D_ w +D W

XX ,XXXX Xy ,xXXyy Yy ¥y

= moment effects for isetropic plate
b = yw [ D_-2D_ +D
» XXYY XX Xy yy
= effects due to v (zero for isotropic plate)

D 2D w

W, + ]
Xy,X "Xyy YV.¥ . YyY
= effects of changes in stiffness and curvature

Me = [2Dxx,xw,m+ ny,y w,xyx+

-D +D
XY.¥ L XYX D URY,XLXyY  YYLY w»xxy]

= effects of v for changes in stiffness and curvature

Iid -D 2 v

[D w
XX,X ,¥¥X
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9.1.1.1 (Cont'd)

IIle = [D w +2D w +D w ]
XX,XX ,XX XX .XY Tyy,yy LYY
= effects due to change in stiffness
mt = "[Dxx,xxw,yy " P Vo T Oyyyy W,XX]
= effects due to v for changes in stiffness.
Then
0=T1+1+1I (3b,
0=1I+Ha+Ib+Ia+ b + Illc + IIId + e+ IIIf, (3c)
The linear elastic isotropic plate with constant loads results in the simple form
0=I+1la+IMa (4a)
4
=-q-~ N -2N_w -N +DV
T TV T Ny Yoy TNy Vg v, (4b)
where
4 _
V'w _w,xxxx+ 2w,xxyy +W’yyyy ’
D= Eh3
T12(152y

The problem of a non-linear anisotropic plate results in an exceedingly complex equation
with non-linear coefficients and recourse must be made to approximate procedures.

9.1.1. 2 Buckling Load

The buckling load of a structure can be found by determining the eigenvalue which
permits non-trivial solutions to the Euler Equilibrium Equation. The lowest load which satis-
fies an eigenvalue is the buckling load of the structure.

The technique is illustrated for a pin-ended column of constant stiffness. More com-
plex illustrations can be found in various texts, including References 9-2, 9-3, and 9-4.

Example: Simply supported column of constant stiffness (neglecting shear energy)

dyand w

FIGURE 9.1.1.2-1 PIN-ENDED COLUMN
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9.1.1.2 (Cont'd)

Equation {4b) of Paragraph 8.1.1.1 is used where D = EI, -

Nyy = 0 and deflection w is independent of y.

The Euler Equilibrium Equation becomes

4 2
g ¥ .r ¥ -,
dx dx
or
d4w d2w _
2 + A 5 =0
dx dx
where
_ F
A= TE

General Solution:

w = (C; +Cgx) + C4cos hx+c4smﬁx

Boundary Conditions (Simple Supports):

w()=w ({)=0
dwo) _ dwa .
o2 o

‘. Cl=02=03=0andﬁ = nw/l (@ is an integer)

\/‘ Fn nm
VA 2SR T

for a non-trivial solution.

Fn n21r2
- ?Ln = & = 12 {Eigenvalue)
2 1r2 EI
Fn= n -5 (Critical Loads)
1
‘J'l'z El
Fi= 3 = Buckling Load = Lowest Critical Load

N

XX

(1a)

(1b)

{lc)

2)

@)

(4a)

(4b)

Successive eigenvectors and corresponding critical loads are listed in Figure
9.1.1.2-2. Note that the deflection amplitudes W10 =" Wno 2T undetermined.

n0
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9.1.1.2 (Cont'd)

£

10

+— &

20

nd

[\

[\
/

w2 = w20 sin\/kz X

_ 4r? EI

FIGURE 9.1.1.2-2 EIGENVECTORS AND EIGENVALUES OF COLUMN
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9.1.2  Stability by Virtual Work

It has been shown that when the structure buckles, it buckles in the eigenvector shape.
For this situation, changes in virtual strain energy (6 U} are equal to the changes in virtual

work (6W). The principle is again illusirated for this column:

1 1 2 2
aU=f 0. 5 {€,.) AV =f -Mb K dx=f g 4w 5 4W
v ! 13 0 0 ax? ax®
1
1 2\ +
6W=F6u=F6[1—f (1—(%:—) )2 dx}
0
1 2 1
_ 1 (dw - dw aw
5w-Faf0 2 (dx) dx Ffo o 6(dx)dx.
1 0 0 1
JomLr ety -] e e
0 dx 0
Let
w =w0f;6w = 6W°f
where
W0 = maximum deflection
and
f = eigenvector of the structure.
Then

1 1
2 = 2
woﬁwofo El f,xx dx Fwoéwofo f,x dx

fEIf?ndx
J2, &

= F = buckling load

dx 1)

(2a)

(2b)

(3a)

(3b)

(3¢c)

Similarly, expressing the moment and change in curvatures for a pin-ended column

(M = -Fw, w(0) = “’,xx‘“’ =0, wil) = w,xx(l) = 0).
The following is obtained:

frelir) e o)t w2 -

F
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9.1.2 (Cont'd)

and integrating by parts the following alternate expression is obtained:

1
f ff_dx
F = - 01 5 » XX . (4b)
f f
o EI dx
Note that this is true only if f symbolizes the eigenvectors. For a pin-ended
column fn = gin nl_nx » which yields the critical loads
2 22 B
F_ =“—2-— » (Eq. (4a) of Paragraph 9.1.1.2)
1

The same critical loads would result if an initial eccentricity 1s assumed.

The eigenvector f (which is obtained by solving the Euler Equilibrium Equation)
may be exceedingly difficult to obtain. However, one can use the properties of eigenvalues

(Paragraph 9. 1. 3) or the energy principles to obtain approximate solutions to the buckling
load.

9.1.3 Properties of Eigenvectors (Deflection Modes) and Eigenvalues (Critical Loads)

The following properties of eigenvectors and eigenvalues are of use in the determination
of the stability of structures by direct or approximate procedures. The properties are illug-
trated for a one-dimensional problem bhut can be extended to the two-dimensional case,

(1) An eigenvector is a deformation pattern compatible with the boundary conditions of the
structure which makes the potential energy of the structure stationary, i.e., [a L a 0.

(2) The eigenvectors of a structure with homogeneous boundary conditions are orthogonal
to the curvatures of the eigenvectors. When the eigenvectors are orthonormal {(weigh-
ing function is unity), then

fuiujdx=ﬁij

(3) Associated with each eigenvector is an eigenvalue which is associated with a buckling load

of the structure. The eigenvalues are non-decreasing for the structural problems con-
sidered.

4) Restricting the possible (admissible) classes of functions which can be eigenvectors cannot
result in a reduction of the buckling load. This is equivalent to saying that additional re-
straints at the boundary can only increase the stability of the structure. The less re-
strained the boundary, the lower the buckling load, which increases as boundary goes
from free, to simple supported, and to clamped.

(5) The addition of restrictions within the structure is equivalent to stiffening the boundary
conditions (property 4). Thus the addition of another support at the center of a column
can increase the stability four-fold.

{6) If two structures have the same cross-sectional stiffness and boundary conditions but the
size of one is smaller than the other, then the eigenvalue of the first is never less than the
second. Thus, the stability of structures with identical boundary conditions is never less
for the smaller structure. A short column is more stable than a long column and a square
shear panel is more stable than a rectangular shear panel thathas the same boundary con-
ditions and smaller side equal to that of the square.

WADD TR 60-517 9.15



9.1.3 (Cont'd)

(7) If two structures have the same geometry and boundary conditions but the stiffnesses of
one structure is greater at each corresponding point than the other structure, then the
buckling load of the first is at least as great as the second. Thus if the bending stiffness
of a column varied, the critical load for this column would lie between the critical loads
for similar columns with constant bending stiffnesses equal to the largest and smallest
value of the bending stiffness of the column in question.

(8) The uj eigenvector has j-1 nodes in the interior of the structure. The sub-division of a

structure into elements bounded by nodes permits analysis of the sub-structure without
considering compatibility of deflections.

(9) A continuous (compatible) deflection can be taken as a sum of weighted orthonormal
eigenvectors.

W = Za, u, where a.=fwu. dx
i i i i

(10) The orthonormaslity of the eigenvectors simplifies operations upon a function which is
expressed in terms of the eigenvectors. Continued operations (iterations) causes the
resulting function to be heavily weighted in favor of the extreme eigenvalue. If the
extreme eigenvector is not known, then any arbitrary smooth function (it is assumed that
the sought after eigenvector is the extreme component of this function) will, upon iteration,
approximate the eigenvector. The eigenvalue, or buckling ioad, can then be found.

Let A be any non-singular operation where

S - Al
Aui = ki u, & ?Li u = A uy (la)
2 F
-1 d”uj i
g, letAty = - 3L, A~ —ffu.dxdx,h S—
1 dxz i i EI
Letw, = Za, u where Yo = initial approximation of the lateral deflection.
= = = -1 =
Awo AZ (ai w) Za (Ani) = X (a1 JLi )u =w,
A 2 -1 -2 (b}
(Awo) = Awo— z 8 Ai (Aui) = Z (ai Jli ) o o= W,
n -]
A'w, ——E(ailin)ui=wn m=0,1, 2.... )
-n -n -n -n
v . Eaili u _ Al Eaiui+zaiui(li A ) a
w “@d) . 5 -n-1 -n-1__-n- ©)
+1 n-1 n-1
n Eai?t1 LA 7&1 Zaiu1+z:aiui(?ti -A )
For the structural problems considered it is assumed that llg hi . Consequently,
W
lim n -
Re® W o = A (d)
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9.1.3 (Cont'd)

Operating upon an assumed deflection pattern results in a calculated deflection pattern
which is closer to the true buckling pattern. If the assumed deflection rattern is t?e
true one, then the operation gives the eigenvector modified by a constant Aui = Ai" .

Thus if W, were exactly a u, then

w

0 _
R A.i . (le)
1
*n
The ratio - will vary along the length of the column (except when v is an eigen-
n+l

vector). This ratio will have 3 maximum and minimum value for different values of x.
It is noted in paragraph 16 of Reference 9-2 that

W F W
. < 5 sl - a6
Va+i Min n+l Max

A lower bound on the buckling load can be found by employing this principle. The

technique is fo assume an initial eccentricity of the column W, and determine the deflec-

tion Wy due to an axial load F (Wl““—‘-[)x fx Fwo dxdx w;‘i’th applicable boundary conditions)
0

EI
and determine the maximum and minimum ratio of

The ratio at the point of
1

maximum deflection usually results in a lower bound on the buckling load. Closer

approximations will result if the process is repeated with the new deflection pattern.

{(11) An upper bound can be obtained by a scalar product method as follows since A™1 u, =
A{ u,, the following is obtained: !

[atey @) a [y}«
= 5 =2 - (2a)
fo @) o Ju® &
Similarly, f Al w) w dx ) f(z Al a; u) (Z a; u)) dx
I(W) W) dx [Ee ) 2 @) dx

f= a; A w) (Za;u) dx
_[E (ai ui) z (ai ui) dx

za?a A, Zal+zal @ -1
i M MEyy i YN
= T 2 = 2 A, (2b)
Eai Eai
) 20 3y >0
since a, ()t1 1)_ .
-1
Tl w) ) ax
> A, . 2¢
JeTm a2 M )
2
IfA_1w=—d‘;=—wxx.
dx L)
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9.1.3 (Cont'd)

then from Eq. (2c)
[ 0 om ax

- > A, (2d)
fwz dx 1

Assuming any w, and operating upon the assumed function as shown in Eq. (2¢), results
in a value which is never less than the lowest eigenvalue. The evaluation of the eigen-
value (buckling load) is relatively insensitive to the inaccuracy of the assumed deflection.
In both cases (10 and 11), equality results when the assumed value w 18 the eigenvector
a; uy and the difference is small when w is approximately a; u;.

9.1.4 Approximate Methods of Determining Stability

The solution to the differential equilibrium equation may be quite difficult to determine
directly. Approximate solutions are obtain from energy considerations. The physical argu-
ments parallel the properties of eigenvalues noted in Paragraph 9.1.3. A deflection pattern
(w) is chosen. corresponding to the given boundary conditions, and is hoped to be a good approx-
imation to the first eigenvector. This corresponds to applying a virtual displacement to the
actual structure. The solutions are presented for the column but the technique can be extended
to all structures. The stiffness (EI) is retained inside the integral sign to permit equations to be
applied to structures of variable stiffness such as occur when structures are subjected to variations
in temperature.

The deflection can be assumed as a single function or a sum of such functions. The
assumed deflection can be employed to produce a upper and lower bounds on the stability by
approplate manipulations. A sum of functions with undetermined coefficients provides a means
whereby the upper and lower bound sclutions may be made to approach each other as closely as
desired. The closer the assumed deflection curve is to the true deflection curve, the closer
the approximation to the buckling load.

9.1.4.1 Single Functions

Assuming a displacement pattern is equivalent to increasing the stiffness of a structure
by adding additional restraints. The buckling force calculated by the Method of Virtual Displace-
ments, where the strain energy is expressed in terms of the assumed deflection, will be greater
than the actual buckling force. Employing the Method of Virtual Forces, where the complementary
strain energy is expressed in terms of the actual force, would result in an overestimate of the
deflection (flexibility) of the structure and a lower bound on the buckling load.

9.1.4.1.1 Upper Bound

Assuming a compatible displacement pattern with the corresponding strain distribu-
tion results in a larger estimate of the strain energy when expressed in terms of the displace-
ments. The buckling load in this case will be an upper bound on the actual buckling load.

6U 2 6W

letw = wof where f need not be the eigenvector.

fEIf2 dx
» XX

2
ff'xdx
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9.1.4.1.1 (Cont'd)

This equation is identical to Eq. (2d) of Paragraph 9.1.3 and becomes Eg. (3c} of Paragraph
9.1.2 when the assumed deflection pattern is the eigenvector.

Similarly it can be concluded for the usual boundary condition where (f) (f }yis
identically zero at the boundaries (e.g., simple or clamped) that X

2
) f f,xx f & ) f, x I
f B & f ' &
The inequality expressed by Eqs. {(2a) and (2b) is usually smaller than Eq. (1) and
should be employed in obtaining an upper bound. The approximation of the derivatives of the

assumed deflection pattern to the derivatives of the eigenvector patiern becomes more in-
accuraie as the order of the derivatives increases,

v

Fo (22) and (2b)

It is important that the assumed deflection shape should have no component of de-
flection modes which correspond to the buckling of the structure with some restraints removed
The assumed deflection must satisfy all the boundary conditions (restraints) of the structure.
This represents a structure with the same or more restraint than tke actual structure and re-
sults in an upper bound on the buckling load. Thus, if a column has a center support, then the
assumed deflection must similarly have zero deflection at the center of the column.

9.1.4.1.2 Lower Bound

Assuming a force and stress distribution is equivalent to underestimating the stiff-
nesses and overestimating the displacements of the structure. Employing the Principle of
Virtual Force and expressing the complementary strain energy in terms of an assumed stress
distribution results in a calculated deflection which is greater than the actual deflection. This
inequality can be employed to obtain 2 lower bound on the buckling load. A closer bound is
obtained when the maximum deflection is computed.

The hinged column is analyzed by taking a virtual force at the center of the column
and resisting it at the hinged ends.

) 1 ol
4 ol
X 2

F_IC g 'I F
i ’ e

6 F v 1

L2 SF
2 2

FIGURE 9.1.4.1.2-1 VIRTUAL FORCE ON PIN-ENDED COLUMN
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9.1.4.1.2 (Cont'd)

The increased flexibility due to assuming a stress distribution results in an over-
estimate of the deflection.

5 U* (F) =2 6 W*

'/:KGMZWGF

0
1/2 1 F
. Fw 6F w o, _OF
f El (xz)d"+f g1 "X 5 2 WoF
0 1/2
Since w = wof where Wo© deflection at the center, the following is obtained:
2
F2—07 1 ) @)
f Ir e “:/’ Y ax
0 1/2
In general
F> —y—2 ’ (@)
fm
f EI dx

0

where fis the assumed deflection mode = 1 at point of virtual load and where misthe virtual
internal moment on the structure due to virtuul unit load.

Equation (1) is the ratio of the deflection at the center before and after the axial
load is applied. The resulting deflection pattern is closer to the actual eigenvector than the
original assumed value. This deflection pattern can be obtained by integrating the curvature

LA A f,xx d.e., f; = If f,xxdxdx and f1(1/2) = 1) and employing the new deflection

m,ode in Eq. (2b) of Paragraph 9.1.4.1.1 and Eq. (2) of this paragraph, to obtain closer bounds.
This can be continued until the difference between the upper and lower bounds is within acceptable
limits (the upper bound is usually the closer of the two).

The lower bound technique described above is mathematically similiar to the pro-
cedure shown in Paragraph 16 of Reference 9-2.

Example: Pin ended column of constant EI

_ 4w, (zero deflection at ends x = 0, 1 but with
TLet w = 2 X (-X)  curvature at the ends representing some
moment restraint)
-4
f = 12 x (I-x)
t, = €% -2
_ 2
fox = -8/1° |

WADD TR 60-517 9.20



9.1,4.1.2 (Cont'd)

Upper Bound:
Using Eq. {2b) of Paragraph 9.1.4.1.1,
1
2 4f 2
ff,x dx ) (16/17)f, @-2x)"dx i 133 - 4/2 +4/3) _ loE
fi N ae/ﬁylﬁa_—zﬁ@ 15/ 2 1) 1
El 0 El Et \3 "7 735
Lower Bound:

Using Eq. (2),

2 - 2 - 9.6EI _ .
1/2 1 a2(1 1 12
T e S R

0 1 1/2 1

9,.6EI 10.0 EI

<F _ <
l2 cr 12
7 EI 9.8697 EI
The buckling load = 3 = . >

Closer Bounds:

A loading of le = F 4Tx(l-x)wm, upon integration results in
1

16x ox? x>

Wo = Tg1 - 2z TP Vo

Repeating the above operations with the closer approximation results in

5.836 EI < < 9.871 EI
I2 = “e¢r — 12

Closer bounds are more probable if the assumed deflection pattern matches the
boundary conditions identically. The upper bound procedure is a Rayleigh-Ritz method in
which a function with a limited number of undetermined coefficients is assumed. The coeffi-
cients can be uniquely determined by satisfying the boundary conditions identically. The

function
2 3
96 x [ 11 (x X ]
31 W0|:1 1% (1) +5/6(1) }

satisfies the requirements of zero deflection and moment at the ends x=¢, 1 and would result
in upper and lower bounds which are quite close
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9.1.4.2 Multiple Functions

The closer the assumed deflection pattern is to the true deflection pattern, the closer
is the approximation (see example in Paragraph 9.1.4.1.2). It is convenient to take the assumed
deflected shape as a sum of functions, with undetermined coefficients, which correspond to known
eigenvector solutions of the equilibrium equation for structures which are similar to the actual
structure (e.g., slightly different boundary conditions). Since the eigenvectors are orthogonal,
the energy is easily calculated as a function of the squares of undetermined coefficients (a 2)

The coefficients {relative weight)to be assigned to the functions are determined by making the
potential stationary with respect to the undetermined coefficients (8aL = o) . If the energy is

i
expressed in terms of the displacements and the functions satisfy boundary conditions which are
the same or more restrained than the actual structure, then the resulting solution must be an
upper bound. (See Eq. {2a) of Paragraph 9.1.3). An adequate number of terms representing the
deflection, each with less restrained boundary conditions would result in a lower bound. If the
individual functions do not satisfy the actual boundary conditions, then a constraint (Lagrangian
Multiplier) relationship can be imposed among the coefficients (in additional to Baa =0) so that

the total assumed deflection (Za,u, P satisfies the boundary conditions. It is shown'in Reference
9~4 that a termwise matching ot’1 the higher derivatives (e. g slope w %) with an over-all matching
of the lower derivatives (e.g., deflection w) results in a more rapid convergence (closer bounds).
Some methods of obtaining an upper bound by assuming functions which satisfy boundary conditions
of equal or greater restraintare known as the Rayleigh-Ritz and Galerkin Methods. The upper
bound is the solution of a structure which is stiffer (more restrained) than the actual structure.

The '"Rayleigh-Ritz Method" is an extension of Egs. (1) and (2) of Paragraph 9.1.4.1
to multiple functions where the coefficients are selected to minimize the potential energy. The
"Galerkin Method' is an application of the principle of virtual work. If the lateral displacement
n

isw =2 a u, then the stationary property of the potential (6 L = 0} requires that the virtual
i=1

energy of the virtual lateral displacement dw = u, & a acting over the eqmvalent lateral load as

expressed by the equilibrium equation, Eq. (3) of Paragraph 9.1.1.1, {.e. DV w - NV w~q=0)
must be zero:

f(DV4w “N-Vw-q [.a @ ui)] dxdy = 0 (1a)
f (0v? (2 aju) - N-V? (2 au) - q )u, dxdy = 0. (1b)

Equation (1b} is a set of n simultaneous equations which determines the best value of the coeffi-
clents of the n functions for obtaining a close upper bound. The Galerkin Method usually results
in a closer or more rapidly convergent upper bound.

The Trefftz Method obtains upper and lower bounds by assuming deflection patterns
which represent less restraint at the boundaries. Selecting coefficients which make the potential
stationary and simultaneously satisfy the given boundary (constraint) conditions results in a com-
puted upper bound upon the buckling of the structure. Ignoring some of the boundary constraint
conditions results in a new computed stability which is less than the originally computed one.
Care must be taken with the Trefftz Method since a sufficiently large number of functions must be
employed before the lower value can be assumed to be 2 lower bound. The deflection pattern must
be fairly accurate or it is possible that the computed buckling load with the less restrained boundary
may overestimate the stability. Employing only a few terms may overestimate the internal energy
within the boundary to overcompensate for the lower energy in the region of the boundary,
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9.1.4.2 (Cont'd)

The computational techniques for multiple functions are illustrated in two very simple
examples. These techniques, though powerful, cannot be shown advantageously in the simple
problems presented.

Example of Rayleigh-Ritz Method - Column of non-constant stiffness with pin ends:

EIl =MD, 0<x<1/2 where <1
EI = D, l/2€x<1
F
FIGURE 9.1.4.2-1 PIN-ENDED COLUMN WITH VARIABLE STIFFNESS
w
Assume a deflection w = T a1 sin-(-z-g-—llm-ﬁ .
n=1
1)
aw . - (2n-1)mx
Then = - w,x = f:l {2n-1) ayn-1 €08 T
d2w 1'r2 @ 2 (2n-1)mx
~—'§=Wxx=-—22 (2n-1) aZn_lsin 1 .
dx ? 1° n=1

Each term of this deflection pattern satisfies boundary condition

w{o) = w(l) = 0
Yo =W =0,
and is a eigenvector for columns of constant EI. They are orthogonal in the region 0 to 1/2.

For an elastic structure

o fo ) (8-

1 4 . 14 4.2 . 2@n-Drx
2L=[ 7D -en-n*aZ sin? EVTE gy of p T (on-1)* o2 gin® ERDTE 4
4 2n-1 1 4 2n-1
0 1 /2 1
fl 7 on-12 a2 cos? ZD-LTE 4
", T2 @n-1)" ag, 4 1
P vz 4 4 2 2 (2n-1
- ks . -1)7X
2L =j; 1)%(2:;1—1)’1 a2 sin? £OMTX gy g oD DLrene, s ILE S
1 42 2.2 2 (2n-1)mx
- Fj; “12 (en-1)* ag _, cos dx
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9.1.4.2 (Cont'd)

1 1
f sin” ZBLTX 4 f cos? BTX gy =1/
0 0

Since
172 5 (on-1)m
f sin -(——1—1 dx=1/4 ;
0
‘. 2L = iD—l— = (2n-1)‘jr a2 + _'!f_( -1 D-I——E (2:1—1)4 a2
.- A 3 an-1 * T 7 ) D3 on-1
2
T 1 2 2
- Py renian,
oL = T D17 5 an-1)? o2 N F Z (20-1)° a2
o3 2 8op-1 ~ 20 { 8on-1 °
d g 8L _ & 147 en-1)% _ F (n-1)% =0 ;
an o = 3 2 I B Y 85,1 =0
on-1 1
- 0 dF-'2n-12 1r2 kD 1+7
Gop-1 = 0 am = (20-1) 2 3

F min occurs atn =1.

2
_ _T 1+7 _ - -
F = ) D > andO-a3-35—a7 .....

The calculated critical load is the same as that for a column of constant average
stiffness which is an upper bound to the true solution with increasing inaccuracy for smaller
values of 77 . Ignoring the even eigenvectors (for computation simplicity) is justified by the
lower internal energy level of the first eigenvector but permits only symmetrical buckling
modes. The error is an overestimate of the stability due to the fact that the actual deflection

is not fully described by the odd eigenvectors alone (when7n #1.)

Example of the Trefftz Method - Clamped column with constant EI, determination of
upper bound:

F, -...._X.__"“/flé_.F

- 1 -

FIGURE 9.1.4.2-2 CLAMPED COLUMN

Let w = X a, cos —(21—_1}“1&
Then W = -z @) g sin G
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2
- T (2i-1)mx
W, Z (2i-1) —-—12 a; cos 1

The boundary condition of the displacements are satisfied identically, i.e., w(l/2) =w(-1/2) = 0.
The requirement of zeroslopeat the ends can be satisfied for the upper limit as follows:

0=w_ (-—}2-) = W, (—,}) =- 2 @i-1) T o sin ET =261 @ a .

o1 @i-1 a =0
is the constraint condition on the coefficients which ensures an upper bound.

Determine the coefficient (ai) by making the potential stationary but modify the

potential by a term which is identically zero and represents the constraint condition on the
coefficients. The technique is known as the Lagrangian Multiplier Method. Thus,

2 2 2 3
wofl= (8 (&) ] rretenns

where p is a Lagrangian Multiplier.

4
2L = EI T~ za? (2i-1)* [cos? ZLE P
1 1
2 .
-F Tz a? @i-1)? fsinz -(2—1'—193 dx - p % (1) @i-1) a
1
9L _ EIr 4 Fr° 2 i
D=2 5= tg—e s - e - ke @
a = p-1)*
i 4 R
B @)’ - £ @iy
1
i,
0 =z ¢y @il g

0 = =
2 2
Z T [ Elr (21“1)2 _ F:]

2 | 12

n
— B Z 1 = 0 ,
w®  Eir> @i-n% - &
T ) i=1
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where
k = Fz = FF = ratio of buckling load to Euler buckling load.
Elx E
12
Solving the above equation forn =2, 3, 4, 5, ... gives approximate value F = 5 FE' 4.63 FE’
4.45 F, 4.35 F, ... which convergesto F = 4 Fp = —43-12—3’1.

More rapid convergence would occur if the slopes %:— at x = 1/2 were satisfied
identically by employing an odd sine series and a constraint condition on the deflections

a sin -@i;})-ﬁ = O)n. This woulci result in

1 3] = 0,
i=1 (@1-1)2 [¢21-1)2 - k]

n
=
i=

9.1.5 Shear Energies

Ignoring the strain energy due to shear is equivalent to overestimating the stiffness
of the structure and results in higher calculated bitckling load. Ignoring the axial strain energy
does not affect the stability calculations if the axial work of external loads is ignored. These
conclusions become obvious upon examination of the potential of the column in which the trans-
verse shear and torsional energies should be considered.

When a column is axially loaded, it deflects laterally due to initial eccentricities.
The slope (W x) of the column gives rise to a transverse shear load as shown in Figure 9.1.5-1.

The equivalent transverse shear load (V) acts with the equivalent axial force F at the centroid
of the effective areas of the cross section. Twisting due to a torsional moment Q will occur
if the transverse shear vector, acting in the direction of the lateral deflection, does not pass
through the shear center of the cross section. The loads acting upon the cross section can bhe
defined as follows:

M =-Fw (1a)
V = Fw x {1b)
Q = er’x . {lc)

Examining the change in potential due to a virtual displacement,

6L = §U~-6§W= GUM +6UV +6uQ +6UA- (6WM +6WQ +6WV) - 6WA=0, (2a)
where
i} UM = change in bending strain energy = f Mb (%) dx
& UQ =  change in torsional strain energy = f Qs (%—) dx
é UV = change in transverse shear strain energy = f Vé (L) dx
AG
= _ F
GUA change In axial strain energy = f Fé ( AE ) dx
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F

b Tateral
X Restraint

z Centroid of Area
Bending ‘ Y
Axis - X —& i
=
Shear
Center — € —al
V=F
W, X

FIGURE 9.1.5-1 SHEAR AND TORSIONAL LOAD ON A PIN-ENDED COLUMN
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i) WMQV = 5WM + 6WQ + 6WV = change in potential energy of the external loads (assunz:ung in-
extensibility) =F 6 [f—l- iw_) dx]
¥ W = change in potential energy of external loads due to axial deform-
ation of the cross section = F § f dx,
and

e = distance from shear center to line of action of the transverse
shear V

M = moment acting on cross section =-Fw dw

V = transverse shear load on cross section = F rre

Q = torque acting on cross section = e F d—w
"EI = bending stiffness = f E z dA
JG = torsional stiffness = G 2 dA
AVG= transverse shear stiffness = GS times effective shear area
= - _€-¢cT
ES = secant modulus = 5 .

The changes in axial energy are exactly equal since
GU—.SW fF(S(AE)dx Fﬁf —Féf(—-———)dx = 0. (2b)
Equation (2a) becomes

| 60U, +8U, +6U, -6W = Q. (2¢)

M v Q MQV
Substituting the equivalent expression containing F into Eq. (2¢) results in

Fw e Fw
Fw ;X X 1 2 _
f{FWG(——EI )+Fw’x6(A G)+er,X 5 (———-—L—JG )- F ‘3(“2 w’x)}dx =0

\
2
2 W oW 1 e _
{0 (m*w)}d"'f"f“’,x“’,x =0
£2 ax
P = X 3a)
" Ter 2 2 2 (
ffdx+ff 1, _e dx
El X \ ALG JG
\'4
1

(3b)

Y AL
f,x A;G_ JG
f f f f2 ax
» X
The bending solution always overestimates the stability of the structure since it
assumes infinite shear stiffness A G and JG. Comparing stability Eq. {4a) of Paragrah 9.1.2
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2
with Eq. (3b) above indicates that the true stability is smaller since 1 G 7 £ is 2 non-
2 V
1

e _ JG
e + o is constant, and

v
2
I

negative term. If

FM = = buekling of column with infinite shear
f i dx stiffness,
then
F _ 1
er 2 ’ (4a)
FM AVG JG
or 2
1 1 1 e 1 1 1
= + + = + + {4b)
or FM AVG JG FM FV FQ
and FM
Fcr = F F ) (4c)
1 M M
"F, T F
v Q
This is analagous to springs in series where F is the effective stiffness of the three springs and
C,, EI
FM is the stiffness of the bending spring = 1;1 . FV is the stiffness of the transverse
1 C
shear spring = CVAVG. FQ is the stiffness of the torsion spring = ? JG.
e
Cpy E1ND)
1+M(E12)+MEI(_9_)
CV AVG ! CQ JG 1

If any spring is very flexible as compared to the other springs then the effective stiffness of the
springs in series is approximately equal to, but slightly less than, the stiffness of the very flex-
ible spring. Thuswhenthe shear and torsional springs are very stiff, the bending solution pre-
sents a good upper bound approximation to the stability of the structure. Similarly, if a structure

is relatively weak in shear {e.g., a sandwich construction with a soft core), when the value AVG

represents a good upper bound upon the stability. The torsional effect is usually insignificant for
closed sections (large J) or sections symmetrical about the axis perpendicular to the bending
axis (e = 0).

9.1.6 Plasticity and Eccentricity

The Euler equation becomes non-linear when the bending stiffness becomes a function
of the applied load N and the deflection w and its derivatives. The lateral deflections w increases
with load, and the moment acting on the section increases at a much greater rate than the load.
Instability occurs when the rate of increase of external moment becomes greater than the struc-
ture can generate by an increase in internal moment (bending stiffness times curvature), The
load and moment on the cross section tend to reduce the bending stiffness when the stresses
exceed the proportional limit. The computed stability of the struecture with elastic properties
must be an overestimate. The effect of the plasticity of the material can only reduce the stabi-
lity and can only be approximated (References 9-1 through -6) at the present state of the art.
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Preliminary investigations (References 9-1 through -8) have indicated that for
structures of small initial eccentricities, an upper bound on stability is obtained when the
stiffness is computed assuming an effective modulus of the material equal to the secant
modulus (ES) of the mean stress on the cross section. A lower bound is obtained when the

effective modulus is the tangent modulus (ET). When the initial eccentricity is large, how-

ever, the stability can be below the tangent modulus load. Ruferences 9-5 and -6 consider the
case of plates and columns of small initial ececentricities where the bending stiffnesses (Dxx’

D__ ) are assumed to have an effective modulus of ET and the twisting stiffnesses (ny = Dyx) are
assumed to have an effective modulus of ES. The relative weight of the moduli is determined by
the boundary conditions and the resulting (assumed) deflection patterns (W .. and w ij). The

solutions are dependent upon an assumption of isotropy of the material defined by an octhohedral
stress-strain law (Section 3) and a constant Poisson ratioof .5 {which slightly overestimates the

stability). The stability criteria obtained in this manner are presenied in non-dimensional form

in subsection 9.2.

The effect of eccentricity is quite pronounced since it initiates plasticity at an earlier
load and causes the bending stiffness to decrease more rapidly. The bending stiffness is reduced
by the high stresses and the shifting of the neutral axis. Both these effects reduce the stability
of the structure. The eccentricity can cause large deflections of the structure which can change
the initial geometry and cause rapid buckling towards a lower buckling mode as exemplified by
some shell structures.

The effect of curvature on the stability is qualitatively described below. The guanti-
tative effect of initial conditions upon the stability of the structure remains to be determined.
The effect is discussed for a pin-ended column but can be applied to most structural problems.

2
For a pin-ended column M = EI Ql; = Elw x and M = - Fw. As the load increases,
dx 3

the change in internal moment § (EIw xx) must equal the change in external moment & (Fw).

. EIS w,xx + W’xxﬁ(EI) = Féw + wiF. (1a)
When the column buckles, 6 F = 0.
ow
. _ » XX 5 (ET)
e Fy = By T W xx oW 5
oW xx SEDN O xx
= EI W L XX 6w,xx dw
ow
_ & El , XX
(v )
For EI independent of the loading it can be shown that
2
. EIf"  dx _ EIG) 6W .
M ff idx dw

Thus, for an EI which varies with the loading, a comparison of Eqs. (1b) and (lc) leads to
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5 EI 2
f(EI+w'xx v ) f o O
F,, = XX

M 2 '
ff’xdx

(2)

where w = wof.

Employing D for EI generalizes the results. When the structure is linear elastic

( 63\3) =0 ) , the classical result is obtained. If the structure is not linear elastic, then
, XX

Dmustbe modified by the factor AD=w __ %) which is always negative. The value of AD
’ , XX

depends upon the curvature and bending stiffness, which in turn are dependent upon the load level
and the eccentricity.

D is reduced as the material is stressed beyond the proportional limit; this reduces the
effective modulus and shifts the bending axis. If the eccentricities are small, then the expression
in the bracket (D + AD) can be approximated by moduli corresponding to the average stress (e.g.,
E-I is a lower bound for a column). If the eccentricity is not small (this may occur due to thermal
deflections), then the stability may be below the "Tangent Modulus Stability."

9.1.7 Temperature

The application of heat to a structure reduces the stiffness of the structure, causes de-
formations, and may cause compatibility forces at the boundaries and internal stresses. These
effects in general will reduce the stability of the structure.

For thermal loads it is essential to define the axial stiffness, as well ag the rotational
and lateral stiffnesses, of the supports since the temperature will try to make the supports move
relative to each other and will generate boundary forces to satisfy compatibility at the boundary,
these compatibility forces will affect the stability of the structure.

If the axial and rotational stiffnesses of the supports are zero (unrestrained), then the
temperature reduces the moduli of the material, changes the initial eccentricity of the structure,
and may generate internal stresses to enforce the internal compatibility condition that strains in
a cross section be in a plane.

Calculation of the buckling load is quite simple if it is assumed that the structure re-
mains elastic up to the buckling load. In that case the bending stiffness is simply computed at
each cross section where the modulus varies (due to temperature) at every point in the cross
section (Paragraph 4. 1.1 illustrates the computation technique.) The over-all stability is then
computed as a structure with a space variable stiffness

Jo it o

= ’X)
. -
[4r =

The result will be lower than for the structure without temperature since the bending stiffness is
reduced. The effects of additional eccentricities and internal stresses cannot be evaluated at the
present time but the probable effect will be to further reduce the stability. For small eccentri-
cities, the stress-strain curve of the material at temperature can be employed to approximate the
effect of plasticity.

e.g., F
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I the axial and rotational stiffnesses of the supports are not zero, then compatibility
forces and deformation will be generated which may limit the usability of the structure. The
determination of the compatibility forces and deformation is quite complex. For example, a
column might be visualized as an axial and a bending spring in series. Compatibility is satis-
fied by a combination of axial strains and lateral deflections. The amount of axial strain (and
load) depends upon the eccentricity ratio (wo/p) and the slenderness ratic (1/p). If these
ratios are very small (e.g., w, = 0 for a siraight column), compatibility will be satisfied pri-
marily by axial strains. In ﬂng case the buckling temperature of the structure can be calculated
by computing the temperature which will cause the equivalent buckling strain as defined in

Paragraph 9.2.1, i.e., o 1
[ o

AT e, e

where the above parameters are defined in Paragraph 9.2.1. The structure is never perfectly
straight and the bending stiffness is usually less than the axial stiffness. The non-straight 9
structure satisfies compatibility at the boundaries by deflecting laterally {e.g., u = f_% w dx)

whenever the temperature increases. This is accompanied by an increase of load which is much
smaller than would occur with a perfectly straight structure. The change in load is a function of
the initial eccentricity. The non-straight structure never actually buckles but continues to de—
flect. Snap buckles are probably due to a change of the deflection pattern from the thermally
induced pattern to the buckling (eigenvector) mode.

Depending upon the initial boundary conditions and geometries, there is a temperature
corresponding to a given maximum deflection but this is essentially different (and higher) than a
buckling temperature corresponding to the temperature which will generate the mechanical buck-
ling load in a perfectly flat structure. The problem is graphically represented in Figure 9.1.7-1
which indicates that the boundary load may never attain the mechanical "stability" load and that
excessive deflections which violate the original assumptions or destroy the utility of the structure
may occur well before a "stability" load is attained. The general problem is complex and a ex-
position of analytical techniques that consider compatibility forces, deflections, eccentricities,
and plasticity must be deferred.

8.2 Non-Dimensional Buckling Curves

The present state of the art indicates that sufficiently accurate stability predictions can
be obtained by utilizing the stress-strain curve of the material at the given temperature with some
combination of the secant modulus (representing twisting) and the tangent modulus (representing
bending) as indicated in Paragraph 9.1.6. The immense number of structural materials and
operating temperatures makes it imperative to employ a non-dimensional stress-strain law and
stability criteria. The non-dimensional stress-strain law is presented in Section 3. The non-
dimensional stability criteria is developed below and could be extended to include, as a first
approximation, the creep buckling of a structure.

9.2.1 Non-Dimensional Stability

The stability equation can always be presented in the following form:

_KD_KERI
N="2""2 " @
b b

which defines the condition of stationary potential for adjacant deflection patterns.
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. N 1
0= 4= K ER AB2 {2)
c o s Esy . I
T - E. B, \E,/"K_z @)
R S R R Ab
where
N = axial load per inch of width
K =  stability constant defined by linear elastic parameters
1 = inertia of structure per inch of width -
b = length of buckle (length of column, width of plate, etc.)
ER = effective stability modulus
ES = gecant modulus
E A T Apparent initial modulus
A = area per inch of width
D = bending stiffness per inch of width.

The function on the right is a function of the non-dimensional K, (which is a function
of boundary congitions, type of loading, and the aspect ratio) and the non-dimensional geometry
parameter 1/Ab“ (which is equivalent to the slenderness ratio for column and thickness ratio
for plates). It is independent of the material. The non-dimensional expression on the left is
a function of the stress-strain curve of the material, the magnitude of the stresses and the
boundary conditions {and to some degree on the geometry of the cross section), Values of
ES/ER can be found in References 9-1, 9-3, 9-5 and 9-6 and Table 9.2.1-1.

Since the secant modulus is an upper bound on the stability (with the possible expection
for creep at low stresses),
Eg
21

Ex

€ < K I/Ab? . @)

Thus, the median strain of the cross section is never greater than a number which
depends upon boundary conditions, type of loading, aspect ratio, and geometry but not upon the
material,

The variation 6w can be viewed as a time-induced phenomenon which does not alter
the equilibrium equation or the relationship (Eq. (3)) derived from energy considerations.
Creep buckling can be investigated by employing a strain relationship which includes time as
well as stress and temperature. Instability can be approximated by whatever stimulations of
stress, temperature and time applied to the material will cause this critical strain. A strain
relationship which includes the effects of temperature and time as well as stress was presented
in Section 3 and was employed with Eq. (3) to obtain the curves shown in Figures 9.2.1-1 through
-5. These curves should give approximate results even when the structure is subjected to
elevated temperatures for extended times.

Figures 9.2.1-1through -5 are obtained in non-dimensional form
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E E
from EA 00 = UA ( KI2 ) ’ )
R 0 0 Ab
and the non-dimensional stress-strain law,
Ey

- = (1 -5 0'/0'0 + B sinh o'/o'0 (Eq. (2a) of Paragraph 3.2.1),
0

in the following manner.
{1) The effective modulus ER depends upon the boundary conditions and type of loading
and is expressed as a function of the secant (ES) and tangent moduli (ET) as tab-
ulated in Reference 9-5 and Table 9.2.1-1.

(2) The stress-strain law of the material is assumed to be characterized by the three
parameters E At % and f8; which can be obtained from simple uniaxial short time

g

is computed for various values of ¢/c, for a given 8; this value is .
0 \ % / \ab?)

E
and long time tests as described in Paragraph 3.2.2, The value of (—EA—) 0_0
R 0
(Ea\/x

E, E
(3) A plotof (TE—) (_&g__) = (U—A) (%) versus cr/u0 for various # is shown in
R 0 0 Ab

Figures 9.2.1-1 through -5, The curves are then employed to obtain the stability
of a structure as illustrated in the examples shown below. I Figures 9.2.1-1
through -3 two graphs for each effective modulus are presented to improve the
accuracy in reading the curves.

@) The values of the critical strain parameter (KI/Ab2) is defined below for various
types of constructions.

KI \ cc 1r2 (p/l)z
(a) Column ( 5 } = 3 5 {6)
*e aesamde [ () 450 (1) 7]
v
where C =  end fixity of column
c
p = radius of gyration =+ I/A
1 = length of column
(b) Plate or Shell 1 (Wzk)(t_)z
) 12 \;_,2/\b
\ "2 - 2 2 (@)
A’/ AN ) Tt
6-»)/ \ b
where k =  stability constant evaluated in various texts,
such as References 9-1, -2, -3, and -8,
t =  plate thickness
b =  width of plate
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(c) Sandwich Construction 5 2
—Tk (%.)
( KL\ _ 401- v

Ab2)S L, Tk fEf) b 2
2 2 h G b
{1-v) c ¢

@)

stability constant

centroidal distance between faces
average thickness of faces
modulus of faces

thickness of core

shear modulus of core

L T T 1S I |

TABLE 9.2.1-1

EFFECTIVE MODULUS OF PLASTIC STRUCTURES
{(References 9-5 and 9-6)

Unloaded Ends Type ER/ E,
Unaxial Load
Free - Free Column or Long Plate ET/ E,
Short Plate (Eg/E, [1/4 +3/4 (ET/ES}]
Square Plate (Eg/E, [.114 + .886 (ET/ES)]
Simple - Free Long Flange ES/E A
Clamped - Free Long Flange (ES/E N [.428 +.572 V/1/4 + 3/4 (ET/ES)]
Simple - Simple Long Panel (ES/EA) [1/2 +1/2/1/4 +3/4 (ET/ES) ]
Clamped- Clampled Long Panel (ES/EA) [.352 +.6484/1/4 +3/4 (ET/ES)]
Shear
Simple - Simple Shear Panel ES/E A
Clamped - Clamped Clamped Shear Panel ES/E A
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The use of the non-dimensional buckling curves is illustrated in the following
examples

Example 1 - Column with Shear and Twisting;

A sheet stringer whose cross section is shown in Figure 9.2.1-6 is assumed to be
hinged at the ends and forced to bend about the y-y axis due to the planar stiffness of the sheet.

1.2 A

Shear t1.2+1.2) .1=_24

Center X Ay = 0.2 = 12 S
—%- - I= 201637+ Q.2(13)° +55 .25

i .4 Bending = .0108 +.0108 +.0144 = .0360
y ) Axis Y 1 3
—\- c.g. 1.2 J = 5 (1.2 +1.2) (.1)° = .0008
L]l —ad ey 9 36
(Typ.) , 1 PR lA = ST =15
X 1 = 31.62 12 = 1000

o

noa

——le=_3-.—_ CC 1.0 v .3

FIGURE 9.2.1-6 SHEET STRINGER CROSS SECTION

Static Buckling :

From Eq. 6
(5
K _ 1
2 = 5 5
Povean? [($) £ (5) F]
v
.15
- 287 (1000) L0015
L o6l <15 ) =24 /.09 _.036 1+.0078+.105
|\ 1006 / ~12 *\ioo0) ooos

The above calculations are independent of the material and depend upon the geometry.
alone. In the above example, the transverse shear has little effect upon the stability parameter
but the torsional shear reduces the stability parameter by 10%. This is an exceptional case
since the cross section is usually symmetrical (e=0) or closed (large J).

The following material properties can be assumed, if the material is 2024ST81 al-
uminum alloy at 300°F:

E, = 10" psi; ¥=3; o, =5 10)3 psi 8= .0001
E KI 10}’
e 19 (o0135) = 2.7
% Ab 5(10)
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8.2.1 (Cont'd)
From Figure 9.2.1-2(a) or -2(b)
0'/0'0 = 2.7.

The stress is linear elastic since

o _Er x
Uo cro Ab2

The buckling stress O is obtained as

. O _ 3 - .
O - oy = (2.7) 5(10) 13, 500 psi.

0

Creep Buckling:

Equation (6) is modified to Equation (6a) to account for the smaller shear energy
under the creep load. This modification is usually quite small and in view of the inaccuracies
of creep buckling the denominator can usually be assumed to be equal to 1.

2 2
e B - /1) ©2)
Ab 2 2
2[ 2\ A, (e L]
1 +2(l+y )m (1 ) Ay + ( 1) 3 F/Fcr
where F = applied creep load
Fcr = ghort time buckling load .
Let F = 1620
. _ F _ 1620 _ :
« . 0= T T = 6750 psi
€ = .000675 (from stress-strain data)
and .
€ = .0001 in/in hr (assumed creep rate)
L€ = -0015 e — = 00143
1+ [.0078 + .105] T
_ € - €, _ .00143 - .000675 _
tcr = z = 5001 = 7.55 hours.
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9.2.1

(Cont'd)

Example 2 - Simply Supported Sandwich Panel (Figure 9. 2. 1-7):

\
N
\
N
\
N

N

et—————  b=10" —

l r f=.020
1

=— t=.0015

a=20" 1_
h=.3 — |—'-— d=.25

SO
§

DN

FIGURE 9.2.1-7 SANDWICH PANEL

Assuming 2024ST81 aluminum alloy faces and core at 300°F,

E, = 10" psi, v =.3, 0=500°, g = .0001
E d 25
and q, ~ 2(1+v) ¢ = 20+.3) —5575 = 435 (Reference 9-9) .
Compression Loading (k = 4) :
From Eq. (8),
7 k (h)z T4 (_@_)2
K sawh Vb _ 2035 \ 10
Ab? 7 k 2E, n \2 o4 2(.020) .3 )2
1+ z G \bp/ 'Y R AN T
4(1-v"7) c c 4(1-.3) :
.0098

= T+.0098@8) =~ -04(.0098)=.00626 .

The shear deformation of the core causes a 36 percent reduction in the stability strain.

E 7
A (KI ) = 10 (.00626) = 12.52 .

% 2 5(10)

Ab 3

WADD TR 60-517 9.47



9.2.1 (Cont'd)
From Figure 9.2.1-3{(a) or 3{).

Ex

% - 10.05 (Plastic since 6/0_ # K }
g o o 2
o} o Ab

o .= (0/0) o = (10.05) 5000 = 50,250 psi

N, = @) o . = (.040)50,250 = 2010 Ib/in .
. 4.0
Shear Loading (ks~5.34 + 5 = 6.34):
(a/b)

From Eq. (8),

r 2(6.34) ( .3 )2

KL aq-.3%4 10
Ab? 126.34)  2(.02) .3 \2
1+ 5 435 BT
4(1-.3)
.0157
- = .00823
1 + (.0157)(58)
E K_I 7
V3 S - @ 00823 = 28.5 .
o Ab 5(10)
From Figure 9.2.1-1(a) or 1{),
TUA = 12.5 (Plastic)
0
43
T, = r____;/E o - 12.3 O000 _ 3,100 psi
0 .\/:_3 )
Ny, = 27 = 2(.020)36100 = 1444 Ib/in.
9.3  CURVED PLATES AND SHELLS

The stability of plates assumes that the lateral loads (g) are resisted by bending in
the plate since the boundaries are free to move in the plane of the plate. If the boundaries are
restrained or the geometry of the structure is capable of resisting these lateral loads, then
membrane type stresses coupled with the curvature of the structure can resist the lateral
load. The ability of a structure to provide more than one load path cannot decrease the stability
of the structure. The load will be distributed in accordance with the stiffnesses of the load
paths so as to minimize the strain energy. The additional load path is analagous to an addi-
tional restraint which cannot decrease the stability. The shell therefore is inherently more
stable than the flat plate. Unfortunately the energy functions and the equilibrium equations
are more complicated because of the interaction of the membrane and bending stiffnesses.
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8.3 {Cont'd)

The equilibrium equation for small elastic deflections has been derived by Donnell {cited
in Reference 9-8) and can be expressed as

D, - V¥ +D, - V'w + V' (- Viw+q = 0
M A 3
and can be employed to obtain eigenvalues, where DM = bending stiffness ~ —Et—z
12(1-2°)

and DA = gxial stiffness ~ Et.

The assumption of small deflections and a stiff load path by membrane action is not
usually met by a curved plate due to significant initial eccentricities and changes in geometry
with loading. The curved panel can buckle at a load significantly below that predicted by the
membrane-bending model; and may even fail suddenly if the deflection pattern changes under
load and the membrane action becomes limited. This can be visualized as equilibrium existing
for the initial loadings and small deflection eigenvector modes. As loading is continued, the
shell deforms along the original eigenvector but apporach a crest similar to Figure 9.1-1(d)
and becomes unstable, deforming to a different eigenvector representing a solution with smaller
membrane action. The geometry may be changing simultaneously so that the structure could
suddenly deflect to the different eigenvector with a lower eigenvalue. The amount of initial
eccentricity can significantly affect the load at which this cross over can occur. Radially
outward pressures should forestall this phenomenon to some degree whereas inward pressure
should precipitate it at an earlier loading.

The stability of the curved panel and shells will depend upon its bending stiffness DM’
its axial stiffness D,, the boundary conditions, the initial condition (geometry, eccentricities,
etc.), and the material properties. It is recommended that the present analysis of the curved
plates be based on semi-empirical stability criteria shown in Reference 9-8 (e.g. , C(Et/r) or

2
L—k—%— (t/r)2 }. The stability coefficients are based on theoretical cosiderations and
12(1-v )
modified by the statistics of available experimental data. The stability coefficients should be
used in the manner described in Subsection 9.2 except that the correction for shear is not
warranted in view of empiricism of the coefficients. The effective modulus is assumed to be
E. (which slightly overestimates the stability) since the twisting and axial stiffnesses should
play a more significant role than for flat plates.

The stability of a shell is illustrated in the following:

Example: A cylinder shown in Figure 9.3-1 is loaded with a uniform compression
loading along the edges. The edges are simply supported.

From Reference 9-8,

o
—-— = C t/r
Eg
. r _ 10 _ . _ .
since T =1 67 .'. C = .42 (Figure 7 of Reference 9-8),
L - 4z L3903,
ES 10
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9.3

{Cont'd)

FIGURE 9.3-1 CYLINDER IN COMPRESSION

Assuming 20248781 aluminum alloy at 300°F,

and

T ~ 3 _
EA = 10 psi, o, = 5(10} , B = .0001
E 7
A o Lo 10 (0063) = 12.6 .
o 5(10)

From Figure 9.2,1-1(a) or -1({),

9.4

I - 10.6

a

4]

o . = 10.6 (5000) = 53,000 psi

N, = ot = 53,000 (.15) = 7950 b/in

F, = oA = N (2m) = 500,000 Ib.
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