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1. 

On the Concept of Concentrated Loads and an Extension of the 

Uniqueness Theorem in the Linear Theory of Elasticity* 

Introduction 

by 

E. Sternberg and Ro Ao Eubanks 

Illinois Institute of Technology 
Chicago, Illinois 

The traditional formulation of the second boundary-value problem of 

the linear theory of elasticity in the' presence of concentrated surface 

loads, rests on the following properties required of the solution to such 

a problem: (a) it must satisfy the field equations of the theory through

~ the region occupied by the medil.lll1;1 (b) it must conform to the boundary 

conditions for distributed surface tractions; 2 (c) !!:_ must be regulaz-3 ~ 

the exception of singularities at the points of application of concentrated 

loads such that the resultant of the tractions ~ any surface surrounding 

~ given load-point , and lying wholly~~ body, tends to the correspond

ing prescribed concentrated load in the limit~ the surface is contracted 

toward the load-point. 

Since the classical uniqueness theorem does not hold in the presence 

of singularities of the type under consideration, there is no assurance 

*The results communicated in this paper were obtained in the 
of an investigation conducted under Contract N?onr-329O6 with the 
of Naval Research, Department of the Navy, Washington 25, D. c. 

1rnternal concentrated loads are excluded for the time beingo 

course 
Office 

2If, in particular, the loading consists of concentrated forces only, 
the solution must clear the boundary from tractions. 

3The precise nature of these regularity requirements, which is ordi
narily not specified, will be considered later in detail. 
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that tpe foregoing formulation uniquely characterizes the solution to a 

concentrated-load problem. That this is not merely an idle concern has 

been shown previously. In (1]4 were exhibited an infinite aggregate of 

distinct 11 solutions 11 corresponding to the half-space and the sphere under 

normal concentrated loads, each of which possesses the three properties 

cited. There is a priori no reason to give preference to any one member 

of this aggregate, and the question arises as to what precisely is meant 

by~ solution of a problem involving concentrated surface loadso It is 

hardly feasible or desirable to base this decision on experimental evidence 

in each individual instance; nor can the question be dismissed by a refer

ence to the fictitious nature of concentrated loads: the point is that 

the fiction is convenient, provided it is made meaningful. 

In order to supply an answer to the question just raised, one may 

uniquely define the solution to a problem involving concentrated loads 

as the limit of a sequence of solutions, corresponding to distributed 

loadings, which are covered by the classical uniqueness theorem. Speaking 

loosely, for the time being, a unique characterization of the solution to 

such a problem is reached by considering the modified problem in which 

each of the concentrated loads is replaced with an arbitrary distribution 

of surface tractions over finite surface elements (load regions) sur

rounding the points of application of the concentrated forces. The so

lution to the original concentrated-load problem is then defined as the 

limit of the solution to the modified problem, as the surface elements are 

shrunk to the load points while the resultants of the distributed "replace

ment loadings" are made to approach the prescribed concentrated loads. 

~umbers in brackets refer to the bibliography at the end of this 
paper. 
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This limit process is spelled out precisely in Section 7, where we 

prove that the limit-solution so defined exists and is independent of the 

choice of the load regions as well as of the mode of distribution of the 

replacement loadings, provided these tractions on each load region are 

sufficiently smooth, parallel, and of the same sense.5 

The preceding limit-definition, which is analogous to Kelvin's defini= 

tion through a limit process of the solution associated with a concentrat ed 

force applied at an internal point of a medium occupying the entir e space, 6 

is natural on both theoretical and physical grounds. Although Boussinesq 

[3] based his solution for the half-space under concentrated loads on the 

traditional formulation of the problem, his results are in accord with the 

definition adopted here, as is readily verified with the aid of the appropri

ate limit process applied, say, to Cerutti's solution7 for the half-space 

subjected to distributed tractions. The corresponding limit process for 

the sphere under r adial concentrated loads, was carried out in [1]. The 

usefulness of the limit-definition ultimately depends on, and is confirmed 

by, experimental evidence such as that supplied by Frocht and Guennsey [h] 

in connection with the problem of the sphere under diametrically opposed 

concentrated loads. 

Intuitively, one would expect the limit-solution defined earlier to 

possess Properties (a), (b), and (c). That this is indeed the case is 

proved in Section 7, where an additional property of the limit-solution is 

established: (d) the order of the stress-singularities at each point~ 

application of .! concentrated load is -2 r , where r is the distance from 

5Actually, a considerably weaker, but physically less transparent, re-
striction is found to be sufficient. 

6 \ See, for example, [2], art. 130. 

7see [2], art. 166. 
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~ load point. Also 'Condition (d) is intuitively plausible - at least 

if the boundary has a continuously turning tangent plane in a neighborhood 

of each load-point; similarity considerations lead one to expect that the 

singularity at such a point has the order of the Boussinesq singularity, 

induced by a concentrated load applied to a plane boundary. 

We shall refer to "solutions" of concentrated-force problems which 

'meet Conditions (a), (b), (c), but fail to agree with the limit-definition9 

as 11pseudo-solutionsn.8 The solution corresponding to a heavy sphere on 

a point-support, published in [5], was identified as a pseudo-solution in 

[1]. In the same paper other pseudo-solutions were constructed and their 

physical significance was examined. All of the pseudo-solutions discussed 

in (l] violate Requirement (d). It is, therefore, natural to enquire whether 

there exist pseudo-solutions which also satisfy Condition (d). According 

to a generalized uniqueness theorem, proved in Section 8, this is not pos

sible, and the four properties cited represent a unique characterization 

of the limit-solution. 

The significance of this extension of the classical uniqueness 

theorem to concentrated loads, which is the main result of the present 

paper, may be described as follows: 

4 

(i) The theorem yields an alternative unique formulation of concentrated

load problems in terms of Conditions (a), (b), (c), (d) which is equivalent 

to, but far more convenient than, the limit-definition from which it derives 

its physical motivation. In specific applications, the theorem obviates 

8.rhe existence of pseudo-solutions stems from the existence of so
lutions of the field equations, which are regular except for self
equilibrated singularities at the boundary, and which clear the entire 
boundary from tractions. 



the necessity for performing a limit process which is apt to be cumbersome,9 

J..f t h"b·t· lO no pro i J. ive. 

(2) In contrast to the limit-definition, the alternative definition 

through Requirements (a), (b), (c), (d), permits a study of the detailed 

structure of the singularities encountered in concentrated-force problems. 

These singularities require separate treatment if one is to arrive at practi= 

cally useful representations of the solution to such problems. Indeed, in 

order to assure results which are amenable to a complete numerical evalu~ 

ation, it is essential to determine the relevant singularities in closed 

form, at least to the extent where the residual problem is governed by 

finite and continuous surface tractions. · In [6] we employ Conditions (a), 

(b), (c), (d) to investigate the nature of the singularity at the point 

of application of a concentrated load acting perpendicular to a curved 

boundary. The boundary, in a neighborhood of the load point, is assumed 

to be representable by a sufficiently smooth arbitrary surface of revolution 

whose axis coincides with the load-axis. We show there that the singularity 

is, in general, not identical with the known singularity appropriate to a 

load applied normal to a plane boundary; furthermore, we determine the 

supplementary singularities needed to effect a r~duction of the problem to 

one obeying the foregoing regularity requirements. 

(3) The uniqueness theorem of Section 8, and hence the alternative 

formulation of concentrated force problems to which it gives rise, applies 

to the general anisotropic medium in the presence of a positive definite 

9Thus, the exceedingly tedious limit computations performed in [1], 
turn out to be superfluous. 

10Particular difficulties arise in the event a concentrated load is 
applied at a corner of the boundary (e.g., a load applied at the vertex of 
a cone). 



elastic potential. On the other hand, the uniqueness of the limit-definition 

is established in Section 7 only for the isotropic medium.
11 

The portion of the paper preceding Section 7 is, in a sense, prelimi~ 

nary; though partly expository in character, it still contains results 

which are hoped to be new as well as, perhaps, a more rigorous and system

atic development of certain known results. 

Foilowing a review in Section 2 of some geometric concepts needed 

throughout the remainder of the paper, we re-examine in Section 3 the pre

cise regularity limi-tations inherent in the classical reciprocal and unique

ness theorems. In this connecti on we introduce the notion of "regular 

states", which proves to be useful and economical in the subsequent analy

sis. Section 4 is devoted to Kelvin's definition through a limit process 

of internal concentrated loads, and should supply some conceptual clarifi

cation of this subject. In particular, we construct here a counter-example 

to show that Kelvin's limit process does not yield a unique definition of 

internal concentrated loads in the absence of a restrictive requirement 

which appears to have gone unnoticed. 

The brief unified treatment in Section 5 of higher internal singulari

ties (e.g., force-doublets and centers of ·rotation) permits some remarks 

which are intended to be clarifying ; at the same time, this section is pre

paratory to the proof in Section 6 of the Lauricella-Volterra theorems con

cerning the representation of the solution to the second boundary-value 

problem in terms of the given surface tractionso The present reconsideration 

of these theorems might be justified on two grounds. First, a statement of 

11An extension of this proof to anisotropic media would require the 
generalization for the anisotropic stress-strain law of Kelvin's solution 
to the problem presented by a concentrated force at a point of a medium 
occupying the entire spaceo 
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either theorem, sufficiently precise for our needs, is apparently not 

available elsewhere; second, the proof given by Lauricella [7] for the 

second theorem is different and probably less direct, while a satisfactory 

proof of the first theorem in the fonnulation employed here seems to be 

lacking.12 The two theorems tmder consideration fonn the basis of the 

limit-treatment of concentrated surface loads, given in Section 7. 

12The sketch of a proof appearing in ~2] is not safe from objectionsj 
as we shall have occasion to point out. 
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2. Geometric Preliminaries 

For convenient future reference, we summarize at this place certain 

geometric notions which are needed repeatedly in the follovnng develop

mentso Most of these concepts are used in the sense of Kellogg, and the 

corresponding definitions are quoted from [8] . 

A regular~ is a point set which, for some orientation of a cartesian 

coordinate system (x1, x2, x
3
), admits the representation, 

where f(x1 ) and g(x1) are continuously differentiable in the interval 

(a,b). A regular~ is a point set consisting of a finite number of 

regular arcs arranged in order, and such that the terminal point of each 

arc (other than the last) is the initial point of the following arco The 

ru-cs have no other points in common, except that the terminal point of the 

last arc may coincide with the initial point of the first, in which case 

the curve is a closed regular curveo 

A r egion (of space or of a surface) is a connected, not necessarily 

closed,13 point set (in space or on a surface). A regular region of~ 

plane is a bounded closed region whose boundary is a closed regular curve. 

A regular surface element i s a point set which, for some orientation of the 

coordinate system (x1 , x
2

, x
3
), admits the representation, 

(2o2) 

where R is a r egular regi on of the <xi, x2)-plane and f(xi, x
2

) is 

13whenever this is essential, the distinction between open and closed 
regions will be made explicito 
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continuously differentiable in R. It follows14 that the boundary of a 

regular surface element is a regular curve. 

A r egular surface is a point set consisting of a finite number of 

regular surface elements, related as .follows: 

(a) two of the reguia.r surface elements may have in common either a 

single point, which is a vertex for both, or a single regular arc, which 

is an edge for both, but no other points; 

(b) three or more of the regular surface elements may have at most 

vertices in common; 

(c) any two of the r egular surface elements are the first and the 

last of a chain, such that each has an edge in common with the next; and 

(d) all the regular surface elements having a vertex in common form 

a chain such that each has an edge, terminating in that vertex, in common 

with the next; the last may, or may not, have an edge in common with the 

firsto 

The term edge here refers to one of the finite number of regular arcs 

of which the boundar y of a regular surface element is composed, while a 

vertex is a point at which two edges meet.· If all the edges of a regular 

surface belong each to two of its surface elements, the surface is a closed 

regular surface (otherwise it is open). 

By a regular region 2£ space we shall mean15 a closed (not necessarily 

bounded) region whose boundary consists at most of a finite number of non

intersecting closed regular surfaces. Throughout what follows D + B will 

designate a regular region of space with the boundary B (D being the 

14 See [8], p •. 106. 

15This definition is somewhat more general than that used by Kellogg 
[8], p . 113; it is more convenient for our purposes. 
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open region). We observe that the boundary of a regular region of space 

cannot extend to i nfinity; if D + B is not bounded, D contains all 

sufficiently distant points.16 Clearly, B may have a uniquely defined 

tangent plane along its edges and at its vertices. On the other hand, any 

ar c or point of B for which this is not true, is necessarily an edge or 

a vertex of B; i n order to avoid ambiguity, we shall refer to such arcs 

and points as singular edges and corners of B, respectively . Any point 

of B at which the t angent plane exists will be called a regular point of 

Bo By a regular subregion of B we shall mean one which contains only 

regular points. 

16 Thus, the half-space bounded by a plane or the region bounded by a 
hyperboloid, are not regular regions of space. 
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Regular States. Limitations of the Classical Reciprocal and Uni9,ue-

ness Theorems 

J.1 

With a view toward examining the precise circumstances under which the 

theorems of Betti and Kirchhoff hold, it is expedient to introduce the notion 

of "regular states" in the sense of the following definitionso 

Definition 3ol: Let17 u. (P), e . . (P), and r.,j(P) 
J. l.J - l. 

ment, strain, and stress defined££!:. P(:x1,x2,x
3

) 

ordered array of functions of position ·rul'u2,u3; 

is said to define a state S(P) in D + B. 

be ! field of displace-

in D + B. Then the --
ell'el2'••0J ;p;2,.o.] 

The state S may be regarded as a vector with 15 components in a 

functi on space of states and is a generalization of the concept of stress

state introduced by Prager and Synge [9] for different purposes. Equality, 

addition, multiplication by a scalar, continuity, and differentiability of 

states, are defined as in ordinary vector analysis. Thus, if S and S' 

are states with the components ui' eij' ~j 

while k is a scalar constant, S11 = kS+ S 1 

ponents ku. + u!, ke .. + e! ., kif..+ -71 .• 
J. J. l.J l.J l.J l.J 

and u!, e! ., ,rJ ., respectively, 
l. l.J J.J . 

is the state with the com-

Definition J.2: S(P) is!_ regular state in D + B, corresponding to~ 

body-force field F1(P), if 

('a) S is continuous in D + B, u. is continuously differentiable 
J. 

in D + B, and eij' "1_j ~ piecewise continuously differentiable in 

D + B; 

17Throughout this paper Latin suffixes, unless otherwise specified, 
assume the values 1, 2, 3, and the usual sununation convention for repeated 
suffixes is employed. The coordinates Xi_ are rectangular cartesians, and 
differentiation with respect to a coordinate is indicated by a comm.a. 

11 
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(b) S in D satisfies the equilibrium equations 

the stress-strain relations 

r._. . . = Fi, 1J,J 

e .. = c.. ,r , iJ 1Jmn mn 

~ the strain-displacement relations 

u .. + u .. = 2e .. ; 1,J J,1 1J 

-1) ,.1 -2) (c) in~ D is~ bounded, ui = O(r , .,ij = O(r , and 

(3ol) 

(3o2) 

(3o3) 

~ -3 
·t.,j . = O(r ) 

1 ,J as r ...., oo, where r is the distance ~ the origino 

It is assumed that the elastic constants in (3o2) satisfy the s;ymmetry 

relations 

and are such that the strain-energy density 

(3o5) 

is positive-definite. If, in particular, the -medium is isotropic, the in

verted form of (3.2) becomes 

~ . = Ab. .ekk + 211. e. j' 1J 1J :r- 1 

where fl· and j-l are Lame-'s constant and the shear modulus, respectively, 

while 8 .. 1J denotes the Kronecker delta. In this case S will be referred 

to as an isotropic regular state. 

If L is an oriented regular surface lying in D + B (in particular 

L may be a subregion of the boundary B), n1(Q) is the outer unit-no:nnal 
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of L at a point Q, and S is a state regular in D + B, then the re-

sul tant surface traction T. 
1 

of s on L. at Q, is given by 

We note that Ti is defined only at regular points of L• 

(3.7) 

13 

The proof of the reciprocal and uniqueness theorems in the linear theory 

of elasticity rests on the divergence theorem;18 the validity of these 

t heorems is thus restricted by the limitations underlying the divergence 

theorem which we cite19 at this place. 

Theorem 3.1: Let v be a vector field20 continuous and piecewise continu-

ously differentiable in D + B. 

as r -+- oo. Then, 

If D is ~ bounded, let 

1 V • ii do"= J. V • V d1'; 
B D 

-where n is the outer unit-normal of B. 

(308) 

The foregoing statement of the divergence theorem represents the 

strongest valid form which is relevant to our purposes. The theorem still 

holds if v is continuously differentiable merely in the interiors of a 

finite number of regular regions of which D + B is the sum, provided the 

volume integral in (3.8) is convergent. This generalization, however, does 

1 In the proof of the uniqueness theorem for the Dirichlet problem, the 
use of the divergence theorem may be avoided and a stronger theorem is ob
tained with the aid of the maximum principle appropriate to harmonic functions 
(see [8], Exercise 2, p. ,224). The analogous maximum principle' does not 
hold in elasticity theory. 

19see [BJ, pp. 118, 217. The extension of Kellogg's proof to regions 
which are regular in our sense, is trivial. 

20Letters carrying bars denote vectors. The symbols"•" and "x" desig
nate scalar and vector multiplication of two vectors, respectively. Unless 
otherwise specified, the scalar components of a vector v are v.. V is 
t he usual del-operator. 1 



not result in a physically significant strengthening of the theorems of 

Betti and of Kirchhoff. An examination of the proofs of these theorems 

in the light of Theorem 3.1, with the aid of Definition 3.2, yields the 

following statements. 

Theorem 3.2: Let S and S 1 be(~ necessarily isotropic) regular 

-states in D + B, corresponding to~ body force fields F 

respectively. Then, 

and F 1 , 

• ii • d7' = J 'i' • • ii d<r + i F • • ii d7' 
B D -

= J rt., .e' . . d1' = f ~! .e .. d7'. 1J 1J 1J 1J 
D D 

If, in Theorem 3.2, in particular, we take S = S 1 , we reach the 

energy formula 

l 'i'. ii d<r+ i J:' • ii d!T'= 21 w d~ (J.10) 

where W is the strain-energy density given in (3.5). Equation (3.10) 

forms the basis for the proof of the subsequent uniqueness theorem. 

Theorem 3.3: Let S 1 and S" ~(~necessarily isotropic) regular 

states in D + B, corresponding to the~ body-force field. Let B, 
-- u 

Bt be subregions of B such that B + B = B u' = u• on B, and 
- ---- u t , u -

T 1 = T11 at all regular points of Bt. Then ,(.! . = ,/t_.1 • in D + B. 
-- 1J 1J 

The proofs of Theorems 3.2 and 3.3 available in the literature21 rest 

on the assumption of a bounded region and are limited -to the isotropic 

stress-strain relations (3.6). The adaptation of these proofs to the more 

general hypotheses employed here is, however, immediate. Equally trivial 

21 
See, for example, [2], p. 173 and p. 170. 
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is the extension of Theorem 3.3 to mixed-mixed boundary-value problems (e.g., 

nonnal component of the displacement vector and tangential component of the 

surface traction .prescribed). Furthermore, the divergence theorem, and 

hence the two last theorems cited, remain valid if B extends to infinity 

(D + B is then no longer regular), 22 provided B is sufficiently smooth. 

We emphasize that the regularity requirements at infinity stipulated 

in Part (c) of Definition 3.2, though sufficient, are by no means necessary 

for the truth of the uniqueness theorem. Indeed, these conditions are arti

ficial in character since the prescription of a definite rate of vanishing 

of displacements and stresses at infinity cannot, in general, be justified 

on physical grounds. The extent to which the conditions at infinity can 

15 

be weakened, and thus made physically plausible, is still in need of investi

gation.23 In case B extends to infinity, the mere requirement that the 

stresses vanish at infinity is evidently not sufficient for uniqueness. 

This is apparent from a p~per by Neuber [11], containing a non-vanishing 

solution of the field equat ions for vanishing body forces, which is· regular 

in a regi on bounded by a hyperboloid of revolution, clears the entire boun

dary from tractions, and possesses vanishing stresses at infinity. 

We speak of a "unique fonnulation" of a particular boundary-value 

problel}l~if, assuming the exi.ste~ce of a solution to the pro9lem, the -·· 

solution is unique. On the basis of Theorem 3~3·, and with reference 

to the notation used in the statement of this theorem, the subsequent 

22see Footnote No. 16. 

23Tiffen [10] considered the analogous issue with regard to the two
dimensional treatment of the plane problem. The authors are indebted to 
Dr. B. Budiansky of the NACA for calling their attention to an example 
which contradicts the theorem stated in the Summary of Tiffen 1s paper. 



formuJa tion of the mixed problem in the linear theory of elasticity, is 

unique~. ' 

Given F*(P) for p in D, u*(Q) for Q on Bu, T*(Q) for Q ~ 

Bt, ~well~ the elastic constants eijmn' find~ state S(P) which is 

regular for P in D + B, corresponding to f = F *' such that 

B . and T = T at all regular points of Bt •.. 
u * -----=------

It should be noted that the preceding statement of the problem rules 

out hon-vanishing tractions at infinity; this case, however, is reducible 

to the case of vanishing tractions at infinity by means of the principle 

of superposition. 

Theorem J.4: The following conditions~ necessary for the existence of 

~ solution to the mixed boundary-value problem in the foregoing formulation: 

(a) must be continuous on Bu _a_n_d _c_o_nt_i_·n_u_o_u_s_l_y differentiable 

in~ cloaed regular subregion of Bu; 

(b) T*(Q) ~ be continuous and piecewise continuously differenti

able in any cl,osed regular subregion of Bt; 

(c) F*(P) must be piecewise continuous in D+B and, if D is 

~ bounded, F* = O(r-3) as r --. oo; 

(d) If D is bounded and B = Bt' then F~ and T* must satisfy -
the equilibrium conditions 

J/* d7'-, t T* ctcr = o, tr x F* d1'-,. ir x T* dcr= o. 

Theorem J.4 is a direct consequence of Definition 3o2• The list of 

necessary conditions given in this theorem could easily be augmentedo In

deed, any boundary conditions which cannot be assumed by a state S which 

is regular in D + B (e.go, violate the symmetry of the stress tensor), 

are inadmissible. The determination of a set of conditions sufficient for 

16 



the existence of a solution to the problem under consideration is beyond 

the scope of the present paper, which is primarily concerned with the 

uniqueness of solutions whose existence is postulated. Suffice it to say 

that the available existence theorems assume a degree of smoothness of 

the boundary which is not necessaril;y possessed by the boundary of a regu

lar region of space. 

Our main objective in stating Theorem J.4 is to draw attention to the 

fact that the class of boundary conditions covered by the classical unique

ness theorem is far more limited than appears to be generally recognizedo 

In particular, not onl y concentrated loads, but even most instances of 

discontinuous distributed loadings are outside the domain of validity of 
. . 

the traditional uniqueness theorem. It is not difficult to demonstrate 

the incompleteness of· the customary formulation of problems involving such 

distributed loading~, which says nothing regarding the regularity of the 

solution at the boundary and in no way specifies the nature of the singu

larities there encountered. To illustrate this observation, we refer to 

t he well known plane-strain solution for the half-plane under a uniformly 

distributed shear load applied to a finite segment of the boundary. 24 

Superposition upon this solution of the traditional solution for a concen

trated tangential load, 25 applied at an endpoint of the load segment, yields 

an entirely different stress distribution which nevertheless still conforms 

to the usual formulation of the original problem. Moreover, the new "so

lution", as well as the traditionally accepted one, exhibit infinite stresses 

at the endpoints of the load -segment. 

24see, for example, [12], P• 129. 
5 . 2 See [12], P• 88. 
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Although a detailed study of the uniqueness of solutions to problems 

characterized by singular distributed loadings is beyond our present in

tentions, we shall briefly return to this subject at the end of the papero 

We now turn to the concept of concentrated loads which is our main concerno 

18 



4. Singular States. Internal Concentrated Loads 

Definition 4.1:: S(P) is ! singular state in D + B if it is not regular 

in the sense of Definition 3.2. 

Definition 4.2: Let Qcl (ci,= .l, 2, ... N) be ! ~ of discrete points in 

D + B. A state S(P) is regular in D + B except for point singularities 

at QQ', if it is singular in D + B but regular in every closed regular· 

subregion of D + B which does not contain the points Qdl. 

If a QQ', lies in D, we shall speak of an internal point-singularity 

of S; if a Qcx, lies on B, we shall ref er to a surf ace point-singularity. 

The analogous definitions of states regular except for singularities along 

a surface lying in D or along an arc on B would enter naturally into 

the study of uniqueness questions in the presence of dislocations26 and 

discontinuous distributed surface tractions. 

For future convenience we recall at this place the Boussinesq-Papkovich 

solution of the field equati ons for the isotropic medium in terms of four 

· 27 
scalar stress functions. 

Theorem 4.1: Let ¢(P) ~ V(P) be a scalar and a vector field which 

~ ~ times continuously differentiable for P in ~ arbitrary open 

region D. Let 

¥£ u = V(¢ + r • v) - 4(1 -,J)v, (4.1) 

2¢ r · F 
V = - 2(1 - ,;)' 

n2- · f / vV=----
2(1 - ,>) 

in D, where r ~~position vector (x1, x2, x
3

) of P, while µ, 
2 See [2], Po 225, second paragraph. 

2~See [3], pp. 63 and 72, as well as [13]• The solution was redis
covered later by Neuber [14]. The extension of this solution to the case 
of non-vanishing bodr forces considered here, is due to Mindlin [15]. 
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are the shear modulus and Poisson's ratio, respectively. Then the --------- ---
stresses associated with the displacement field u in the sense of the 

displacement-strain relations (J.J) and the isotropic stress-strain relations 

(Jo6), satisfy the equilibrium equations (J.1) for the body-force field 

F(P). 

The truth of the theorem is confirmed by direct substitution. An ele

gant proof of the completeness of the foregoing solution of the field 

equations was given by Mindlin [16], first for the case F = O, and was 

later extended by him to include body forces in [15]. 28 

Our next objective is the definition through a limit process of the 

concept of internal concentrated loads. By virtue of the principle of 

superposition, it is sufficient here to consider the Kelvin problem pre

sented by a concentrated load applied at a point of a medium occupying 

the entire space. A physically natural unique definition of the solution 

to this problem for an isotropic medium is supplied by the following theorem. 

Theorem 4.2: Let D be the entire space and O be the origin. Let 

Dn + Bn be~ sequence of bounded r egular regions of space such that each 

D n contains O, and dn ~ 0 as n - oo, where d is the maximum 
n -------

diameter of D + B. L~t F (P) be a sequence of body-force fields with 
n n -- n -

the properties: 

{a) 

(b) 

(c) 

Fn(P) is twice continously differentiable for P in D; 

F (P) = 0 for P in D and not in D + B; 
n ----- n n 

j F d'( -+ L 
D n 

n 

as n-+ oo; 

28The precise limitations regarding the nature of the region and the 
regularity requirements at infinity inherent in Mindlin's proof, are in 
need of clarification. 
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(d) t jF n I dr' remains bounded as n -+ oo. 

n 
Then there exists~ unique sequence of isotropic states Sn(P), regular in 

D and corresponding to F (P). The sequence S (P), for all P ~ O, con-
- ------------ - n - _...___ n - - -

verges toward~ limit state S(P) which is independent of the particular 

choice of the sequences 

by the stress functions, 

¢(P) = O, 

where r is the distance of 

and F (P). 
- n 

Moreover, S(P) is generated 

L =-------
81((1 - .,J) r' 

V(P) 

P ~ the origin O. 

Definition 4.J: The limit-state S of Theorem 4.2 (11Kelvin-state 11 ) is 

~ to be the state corresponding to~ concentrated force L applied at 

the origin to~ isotropic medium occupying~ entire space. 

Proceeding to the proof of Theorem 4.2, we observe that the Newtonian 

potentials 

¢ (P) n 
= riJ f r(Q) • Fn(Q) 

~ R(P,Q) 
n 

= -
R(P,Q) 

where ~= 1-/a '1l'(1- v), 
( 

r(Q) is the position vector of a point Q of D, and R(P,Q) n 

(4.4) 

is the 

distance from Q to a point P of D, satisfy the Poisson equations (4o2) 

for F = F throughout D. Furthermore, it follows from Hypotheses (a), n 

(b), as well as fran the properties of Newtonian potentials, that these-

quence of states S (P), generated by the stress functions ¢ and Vn n n 
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in the sense of Theorem 4.1, is regular in D corresponding to the body

force field F, in accordance with Definition 3.2. Thus S (P) exists n . n 

and, in view of Theorem 3.3, is unique. 

In order to confirm that S (P) - S(P), it suffices to show that n 

V (P) _.. V(P), and that the first and second partial derivatives of ¢ (P), 
n n 

Vn(P) tend to the corresponding derivatives of ¢(P), V(P) for all 

P ~ O. Since the argument in each instance is strictly analogous, we 

merely ·p~ove that 

that 

V (P) -. V(P). 
n To this end, note from (4.3) and (4.4) 

I vn (P) - V(P) I = ci., l F n(Q) [ R-
1

(P,Q) - r-\P)] d7' 

n 
(4.5) 

whence, holding P ~ 0 fixed, and for all n sufficiently large to insure 

that P is not in D + B, 
n n 

I Vn(P) - V(P) I "' (j, t Jrn(Q) I Ja-\P,Q) - r-
1

(P) I dr' 

n 
(4.6) 

By Hypothesis (c), the second term in the right member of (4.6) tends to 

zero as n - oo; the first term, on the other hand, is bounded by 

<:i,; max I R-1 (P ,Q) 
Q in D + B 

n n 

which approaches zero by Hypothesis {d) and since 

the proof. 

d ...., O. 
n 

(4.7) 

This completes 
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The Kelvin-state s, generated by the stress functions given in (4.3), 

was first presented by Kelvin without derivation in [17], and later de

duced by a limit process in [18], p. 277, on the basis of a sequence of 

concentric spheres for 

constant within Dn. 

D, and on the assumption of body forces which are 
n 

The present derivation, with the aid of the 

Boussinesq-Papkovich stress functions, is analogous to that employed by 

Mindlin [15] in connection with the problem of the half-space under a con

centrated internal load. 

Love's exposition [2], art. 130, of the Keivin limit- process, which 

no longer restricts the shape of Dn and the body-force distribution 

within D, is nevertheless open to minor objections and suffers from a 
n 

certain conceptual vagueness. While the use of a sequence (or family) 

of regions D contracting toward o, is clearly implied, it does not n 

become fully evident that the argument involves an associated sequence 

(or family) of solutions of the field equations~ Moreover, it is essential 

to make suitable smoothness requirements, such as our Hypothesis (a), 

regarding the body-force distributions Fn(P), if the uniqueness of the 

approximating states S (P) n is to be assured. Finally, lack of explicit 

detail in carrying out the limit process leads Love to overlook the need 

for a restriction on F (P) such as our Hypothesis (d). n 

Hypothesis (d) could easily be relaxed somewhat, although this would 

seem to serve no particular purpose; it is implied by Hypothesis (c) in 

the special case in which the body forces F (P) n are parallel and of the 

same sense within D. We now show by means of a counter-example that n 

Theorem 4o2 is false, and thus that the Kelvin limit-process does not yield 

a unique definition of internal concentrated loads, in the abs~nce of 

Hypothesis (d). 
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Theorem 4.J: Theorem 4. 2 is false if Hypothesis ( d) is omitted. 

To demonstrate this, it is sufficient to exhibit sequences Dn and 

F (P), conforming to all hypotheses of Theorem 4.2, except Hypothesis (d), 
n 

such that lim Sn(P) ~ S(P) for Pf O, where S(P) is the· Kelvin-stateo 
n -- ro 

Let Dn be the sequence of concentric spheres 

0 ~ r < 1/n (n = 1, 2, ••• ) , 

and let F (P) be defined by n 

-
F CP) =..!_f (r) for O ~ r ~ 1/n, 

n r n 

F (P) = o 
n 

for r :'!!! 1/n, 

where, 

336 9 1 J 2 3 1 f (r) = - - (1 - y)n (r - ii) (6r + ii r + 2 ) • 
n 5 n 

Direct computation confirms that 

(4.8) 

(4.9) 

(4.10) 

f 1 (0) = f 11 (0) = f (1/n) = f 1 (1/n) = f 11 (1/n) = o, (4.11) 29 
n n . n n n 

whence F (P) meets the smoothness-hypothesis (a) of Theorem 4.2. In view 
n 

of the polar symmetry of F about o, clearly, 
n 

so that I:= O. 

J. Fn d'7' = o 
Dn 

(n = 1, 2, •.• ) , (4.12) 

The stress-functions ¢n(P) and V (P), generating the sequence of n 

states S (P), which correspond to the body-force distributions F (P) and n n 

are regular throughout D, now again follow from (4.4), with F (P) defined n 

29The primes denote differentiation with respect to r. 
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as in (4.9), (4.10). Consider a fixed P f: 0 and choose n > r(P). Then 

¢ (P), as well as the components of V (P), for every such fixed n, are n n . 

the Newtonian potentials at a .point of free-space of mass distributions over 

the sphere D, whose densities have polar symmetry about the center O. n 

According to an elementary result in potential theory, the value of such a 

potential at P equals the value there of the potential associated with a 

single particle at 0~ whose mass is equal to the total mass of the distri

bution. Hence, and by virtue of (4.4), (4.9), we have 

¢ (P) = ~ J r f (r) d'r, n r\ .. 1 n 
D n 

V(P)=-~ r F d~. 
n r\ .. 1 JT n 

D n 

On the other hand, (4.10) is found to imply30 
I 

ex, l r f
0

(r) d'7' = 1, 

D n 
and (4.13), (4.14), together with (4.12), yield 

(n = 1, 2, •.• ) . 

(4.13) 

(4.14) 

(4.15) 

The sequence S, therefore, tends toward a limit state 5 which is genern 

ated by the stress-functions 

¢(P) = 1/r, V(P) = o. (4.16) 

According to (4.1) and (4.16), the displacement fielq belonging to S is 

given by 

30rhe polynomial (4.10) was actually constructed to meet conditions 
(4.11), (4.14). 
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u(P) V 1/r, (4.17) 

and is thus identified as appropriate to a center of compression31 at Oo 

If the conclusions of Theorem 4o2 were valid here, S should tend to the n 

null-state, since L = Oo Indeed, 

for the sequence of body- force fields (4o9), (4.10), which thus violate 

Hypothesis (d) of Theor em 4o2 o The proof of Theorem 4o3 is now complete 

and we turn to a discussion of certain properties of the Kelvin-state. 

Theorem 4.4: The Kelvin-state S of Definition 4o3 has the properties: 

(a) S is regular, corresponding to~ body forces, in the entire 

space D, except for ~ point- singularity at the origin O; 

(b) Let 11 be any closed regular surface surrounding 0 and let 

T be the resultant surface traction of S on that side of ..0.. which is 

oriented toward O. ~ 9 

I: do-~ E; 

(c) '½_j = O(r- 2) as r-+ Oo 

(4.18) 

Proper ty (a) follows from Theorem 4ol, since the stress functions (4o3) 

are harmonic in D except at o, and from the observation that u. and 
l. 

'(, . belonging to S , vanish at infinity as 
l.J 

-1 
r -2 and r , respectivelyo 

Properties (c) and (b) are establ ished by inspection of, and an elementary 

comput~tion based upon, the stresses of S. A trivial limit process confirms 

that (a) and (c) imply 

31 c·J See 2, p. 187, and Definition 5o2 of this paper. 
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(d) J; xT dcr= o. (4.19) 

Thus, the tractions of s on n are statically equivalent to the single 

force E at o. 

Kelvin's realization that the definition of internal concentrated 

loads necessitates a limit process, was apparently neglected in the sub

sequent treatise literature, with the exception of Love [2]. Thus, for 

example, in [12], art. 120, Kelvin's problem in formulated in terms of 

Proper ti es (a), (b), and (d). To see that this formulation is not unique, 

consider the state 

S' = S + cS
0

, (4.20) 

where S is the Kelvin-state, S0 is the state appropriate to a center of 

compression at o, whose displacement field is given by (4.17), and c is 

an arbitrary real constant. S 1 is readily found to possess Properties (a), 

(b), (d), and might be called a "pseudo-solution" of Kelvin's problem • 

27 

. In [19], art. 32, and [20], art. 350, the problem of Kelvin is approached 

on the basis of Properties (a), (b), (c), and Property (c) is claimed to be 

a consequence of (b). This claim is not justified as is again apparent from 

S 1 which possesses Property (b) without conforming to (c). The question 

remains, however, whether Properties (a), (b), (c) of Theorem 4.4 uniquely 

characterize the Kelvin-state, and thus yield a legitimate formulation of 

Kelvin's problem. An affirmative answer to this question will be supplied 

by the uniqueness theorem proved in Section 7 of this paper. 



5o Higher Internal Point-Singularities 

Theorem .Sol: Let the stress-functions ¢ and V of Theorem 4.1 ~ ~ 

manic in~ arbitrary open region D 

the state s. = s . 
1 ,1 

is generated !?z_ 

¢. =¢. +V.", 
1 ,1 1 

and there generate a state 

-V. = V. 
1 ,1 

s. Then 

(.5.1) 

and in D satisfies the isotropic field equations for vanishing body forces. 

This theorem follows at once from Theorem 4.1 and by inspection of Equations 

(Jol), (JoJ), (Jo6). 

Through successive differentiations of the Kelvin-state S(P) with 

respect to the coordinates xi of P, one obtains an infinite aggregate 

of states which are regular in the entire space D, except for progressively 

stronger point-singularities at Oo In this section we deal briefly with 

those singular states which result from a single space-differentiation of 

S(P) and are needed latero 32 

Let Si (P,Q) = Si(~, x2, x
3

; ~l' t2, j) be the Kelvin-state 

corresponding to a unit concentrated load applied at Q( ~l' t
2

, e,
3

) in 

the xi-direction and, for brevity, write Si(P) = Si(x1, x
2

, x
3

) in 

place of S.(P,O). We now define a set of nine states S .. (P) by means of 
1 1J 

S .. (P) = S. .(P). 
l.J 1,J (5.2) 

The physical interpretation of the states S . . , in terms of the Kelvin-
1J 

states S. , is apparent from the observation that 
1 

, 32vfuat follows is a unified treatment of material discussed in [2], 
arto 132. 
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where 8 .. again designates the Kronecker deltao 
lJ 

(5oJ) 

Definition 5 ol i The state S .. (P) , for i = j, is said to correspond to a 
- lJ - ---- --

!orce-doublet, 33 applied at O parallel to the xi~axiso ~ state Sijj 

for i /, j, is said to correspond to ~ force=doublet with moment about_ the 

~-axis (k /, i, j), applied at O parallel to the xi-axiso 34 

We now record the Boussinesq-Papkovich stress functions, as well as 

the displacement fields, belonging to representative members of the set of 

states S. and S ..• 
l lJ 

cl = 1/8 7( (1 - -,)) • 

). 

33A "double force without moment", in the terminology of Love [2]o 
34Note that S .. /, + S .. • 

lJ - Jl 
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For s12 g 

Equations (5o4), (5 o5), (506) are obtained from (4o3) with the aid of 

Theorems 5ol, 4ol . The associated fields of stress follow from (3.3) ~ (306) , 

and may be omitted hereo On the basis of the stress fields belonging to 

(5o5) , (506), and with the aid of (5o2), (5o4) , and Theorem 5ol9 we arrive 

at the following theorem which is analogous to Theorem 4o4o 

Theorem 5 o 2 g The states S . . , ·defined by (5 o 2), have the properties g 
- --- 1J --- - --- -- - -----

(a) Sij is regular , corresponding to~ body forces, in the~ 

tire space D, except for~ point- singularity at the origin Oo 

(b) Let Jl be any closed regular surface surrounding 0 and let 

T .. be the resultant surface traction of S . . on that side of ..0. which 
1J 1J ------

is oriented toward Oo Then, 

J;ij do-= Oo 

For i = j, 

1{ X 'l'ij def' = o, 

while for i ,f j and k f= i,j 9 ---

J; x'rij dcr = € 'Jc, (5.9) 

where -ak is a unit-vector _in _th_e ~-direction, £ = 1 if {i.,j,k) is 

~ cyclic permutation of (1, 2,3), and €. = = 1 otherwiseo 

(c) ~. = O(r-3) as r-.- Oo (5ol0)35 
iJmn 

35The last two suffixes refer to the components of the stress tensor 
belonging to 5 . •o 

1J 
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In contrast to Properties (a), (b), (c) of Theorem 4o4, which will be shown 

in Section 8 to characterize the Kelvin-state uniquelyi Properties (a), {b) 9 

(c) of Theorem So2 clearly do not supply a unique characterization of the 

states S. , o 
J.J, 

Theorems 4.4, So2 suggest a ~emark concerning Saint-Venantis principle o 

The stresses of the Kelvin-state, whose tractions on any surface ..Cl.. sur

rounding O are statically equivalent to a force, decay as r =2 at in

finityo On the other hand, the stresses of a force-doublet state, whose 

tractions on ~ are self-equilibrated, decay as - 3 r o This comparison 

has traditionally been cited36 in support of Saint-Venant 1s principle as 

formulated by Boussinesq [3]o It should be observed, however, that the 

stresses appropriate to a force-doublet with moment, whose tractions on .fl_ · 

are statically equivalent to a couple and thus are not self-equilibrated 9 

also vanish as r -3 at infinity. Hence, the condition of self-equilibrance 

of the tractions on 1)_ does not yield a reduction in the order of vanish

ing of the stresses at infinity as compared to the case in which merely the 

resultant force on .11 is zeroo This observation contradicts rather than 

supports Boussinesq's version of Saint-Venant ' s principle, it is consistent, 

however, with the modified version of the principle announced by von Mises 

[21] and proved in [22]o 

Definition So2: The state S0 = S .. is said to correspond to a center of 
J.J. - -- -----=--------

k l compression at Oo The state S •= -
2 

(S .. - S . . ), where ( i,j,k) is a 
J.J JJ. 

31 

cyclic permutation of (1,2 ,3), is said to correspond to ~ center of rotation 

at O parallel to the ~-axiso 

36see [3] and [2], arto 1330 



The stress functions and displacements for S
0 and Sk follow from (S.5) 

and (5.6). 

For S
0

: ¢0 = 2 (1 - 2 p) ~ v.., = 0 

32 

r 
(5.11)37 , 

For s3 : J -3 ct,[ a 1 a 1) ] ¢ = O, V = -
2 

- - (-), -(- , 0 
'dx2 r 8x1 r . 

-3 1 [ a 1 a 1 ] 2µ u = - - (-), - - (-), 0 • 
471' 'ax2 r 'dxi r 

Theorem 5.2 now yields the properties, 

(5.13) 

(5 .14) 

37Note that ¢0 and V0 are equivalent to ¢ .. and V .. , as computed 
from (5.5), in the sense that they generate u0

• 
11 11 



6. The Theorems of Lauricella and Volterra 

We proceed to state, and indicate the proof of, two lemmas which are 

prerequisites for the proof of the two theorems to be considered in this 

section. These theorems, in turn, fonn the basis of the limit-definition 

of concentrated surface loads. 

Lemma 6.1: Let S(Q) be ~ state regular in~ neighborhood of ~ point P. 

Let S 1 (Q) be regular 1£ the~ neighborhood, except for~ singularity 

at P. Moreover, let 

where r 

. -1 
u.'(Q) = O(r ) 

1 
and r_! . ( Q) = O(r - 2) 
- 1J 

is the distance from P to Q, .and let 

as r-+-0, (6.1) 

8 ~m
0 

J:D&) T• M ~ L, (6.2) 

I:(8) being~ sphere of radius 8 centered at P, whose outer normal is 

directed toward P. ~, 

lim 
8-o 

• u' dcr= o, u do-= L • u(P). (6oJ) 

The first of (6.J) is immediate from the first of (6.1). To estab

lish the second of (6.J), observe that 

"" l T•(Q). [ii(Q)-ii(P)] da

L(8) 

•+ ' u(P) • [ r TI ( Q) do- - r:] . 
. ~(8) 

(6.h) 

The second term of the right member of (6.4) tends to zero with S by 

(6.2); the first term approaches zero as S - 0 by virtue of the second 

of (6.1) and in view of the continuity of u(Q) at P. 
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Lemma 6.2: Let S(Q) be ! ~regular -~! neighborhood ~!:.point P. 

Let Sk{Q) ~~state corresponding to! center of rotation38 ~ P, 

parallel to the xk-aJcis. ~, 

l'lim J T • u.k do-= o, lim r ~ · u do-= t.uk(P), (605) 
o ..... o L<8) 8 - o JLC8) 

"-"""S 6 - 1 -where L ( ) is defined ~ in Lemma -!! and l<.) = 2 V x u is the rotation 

vector belonging to u. 

Consider k = 3 as a t.YPical case, take P as the origin, and let Q 

have the coordinates xi. To prove the first of (6.5), we note that an 

elementary computation, based on (5.12) and (3.7), yields, 

I. T • ;;3 do-= l 1i r [1'11"J.X2 + 1i'.2<x~ - "il 
}:(b) . B7tµ s JL(S) . . 

(6.6) 

+ ;3x2x3 - ~2~ x2 - '½3xl x3] d<r. 

The right member of (6.6) may be written as a sum of integrals of the form 

where, 

l :f(Q) d<T = o, :f(Q) = ocs-2, aS S - o, 
L<8) 

'f(Q) = 'ltP) + g(Q), g(Q) -+ O as Q-. P, 

whence r(8") -. 0 as S ~ 0. 

(6.7) 

(6.8) 

We turn to the proof of the second of (6.5). With the aid of the 

stresses associated with (5.12), we find that 

38see Definition 5.2. 
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A Taylor expansion of u. (Q) 
1 

about P gives, 

with 

u. {Q) = u. (P) + x. [u .. (P) + g .. (Q)], 1 l J l,J 1J 

g .. (Q) -+ 0 as Q-+ P. 
lJ 

(6.9) 

(6.10) 

Substitution of (6.10) into (6.9) confirms the desired .result after a short 

computation. 

35 

The tractions of the singular state 5' in Lemma 6.1, on any surface 

.fl surrounding P and lying wholly in the neighborhood under consideration, 

are statically equivalent to a single force L applied at P. The tractions 

of ff- in Lemma 6.2, on any such ..fl_, are statically equivalent to a couple 

of moment . ak, where ak is a unit vector parallel to the ~-axis. The 

work done in an "infinitesimal" displacement of a rigid body by a force 

system which is statically equivalent to a single force L at P together 

with a couple of moment M, is given by 

u = t. u(P) +i. w, (6.11) 

in which u(P) and (.).) are the displacement vector of P and the rotation 

vector, respectively. One might suppose that the second of (6.3) and (6.5) 

follow trivially from (6.11); in fact, this is suggested by Love [2] on 

pp. 236 and 245. Such an intuitive argument, however, is not sound, as can 

be seen from the following observation. Let S be defined as in Lennna 6.1, 

and let S0 be the state corresponding to a center of compression at P, 

given. in (5.11). Here, 
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s1~0 JDst • u- d-= - 2(1 - 2 ~) (P) 
V ) U. • ' 3(1 - P 1.,1. 

(6.12) 

although, according to (5.13), the singularity of S0 at P is self-

equilibrated. 

We turn to the statement and proof of two theorems regarding an inte

gral representation of the solution to the second boundary-value problem in 

terms of the given surface tractions. These theorems39 were given in dif

ferent form by Lauricella [23], and were attributed by him to V. Volterra. 

Theorem 6.1: Let S(Q) be ~ isotropic state, corresponding to the body 

force 

where P
0 

is~ point of D. Let P be~ point of D and S!(Q,P,P) be 
- l. 0 

~ state characterized £l the properties: 

(a) S!(Q,P,P) = s.(Q,P) +·Si(Q,P,P) + s~(Q,P,P ), 
l. 0 l. 0 · 0 l. 0 

where Si (Q,'P) is the Kelvin-state corresponding to _!!. unit force at P ~ 

the x.-direction~ 
l. ----

3 
Si(Q,P,P) = - S.(Q,P) 

0 0 l. 0 +L 1 .. (P,P ) s\Q,P ), 1 '1.J O 0 

j = 1 

-with i\ . . (P,P) =ax a:. 
l.J O l. 

• a., 
J 

Sj(Q,P
0

) is the state corresponding to!!. center of rotation at 

to_the xj-direction, R is the vector~ P to P
0

, -and ai 

vector parallel to the x.-axis. ___ .,_ _____ 1.-

P parallel 
0 

is a unit 

(b) S~(Q,P,P) 
l. 0 

corresponds to F(Q) = 0 and is~ isotropic regular 

state for Q in D + B; 

39see [2], art. 169, and [19], p. 122. 



(c) '.T!(Q,P,P) ~ T.(Q,P) + Ti(Q,P,P) + T~(Q,P,P) = o, 
l. 0 l. 0 0 l. 0 

in which T.J., Ti, r!, ~ 
* Si, respect:i,yely; 

are the surface tractions on B of -- -
(d) u~(P ,P,P) = W~(P ,P,P) = O. 

l. 0 0 l. 0 0 

• u!(Q,P,P) do-+~ F(Q) • u!(Q,P,P) d'T'. 
l. 0 l. 0 

D 

(6.16) 

Observe that S~ is defined through (b) and (c) as the solution of a 
l. 

second boundary-value problem in D + B. While the existence of * 5., and 
l. . 

hence of S!, is postulated, the uniqueness of these states is assured by 
l. 

Theorem 3.3 and the fact that (d) precludes an arbitrary additive rigid 

displacement field. The singularities inherent in S. 
::L 

i and S, because of 
0 

(6.14), (4.18), and (5.14), constitute a self-equilibrated system; thus, 

* the boundary condition (c) for S. conforms to Condition (d) of Theorem 
J. 

3o4, which is necessary for the existence of 5~ if D is bounded. 
l. 

In the proof of the theorem, consider first the case in which P = P. 
0 

Here, in view of (a), (b), S! is regular throughout D + B and, by (c), 
l. 

(d), is the null-state. Since u(P) is supposed to vanish, (6.17) clearly 
0 

holds if P = P. 
0 

Now, let P ~ P
0

, and let L(8), ~
0
(8) be spheres of radius 8, 

lying wholly in D and having no points in common. The region i) bounded 

by B, L(S), and L
0
(b), is then a regular region of space in which S(QJ 

and S!(Q,P,P) are regular. An application of the reciprocal theorem, 
l. 0 

Theorem 3.2, to S and s1 in £), in view of (c), leads to, 

37 



• u;' dcr-
1 

+ J T • ii I de; + J F • ii I d r. 
Lo 'Jj 

(6.18) 

Proceeding to the limit as b --.0 in (6.18), we find by means of Lemmas 

6.1, 6.2, Hypotheses (a), (b), and (4.18) that 

J T{ • u 

L 
dcr--. u. (P), 

l. 

de; ..... - u. CP) + ax a: .• w(P > = o, J. J. 0 

• u.1 dcr- _.,. O, 
l. 

Equation (6.17) now follows from (6.18) and (6.19). 

(6.19) 

This completes the 

proof. The next theorem aims at an integral representation for the strains 

of a regular state in terms of the associated surface tractions, which is 

analogous to the representation (6.17) for the displacement canponents. 

Theorem 6.2: Let S(Q) be ~ isotropic state, corresponding to ~ body 

forces F(g),whichisregularin D+B. Let P be!point~ D and 

S!. ( Q,P) be ! state characterized £z: the properties: 
J.J 

(a) S.1 .(Q,P) = ~ [s .. (Q,P)+S .. (Q,P)] + s~.(Q,P), J.J ~ J.J JJ. J.J (6.20) 
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where S . . (Q,P) = - s .. (Q,P) is the state corresponding to~ force doublet40 
J.J 1,J 

with or without moment, applied~ P; 

40see Definition 5.2. Recall that all differentiations are with re
· spect to the coordinates x. of P. 

l. 



(b) * S .. (Q,P) 
J.J 

corresponds to F(Q) = 0 and is ~ isotropic regular 

state for Q in D + B; 

Cc) T.' . ( Q,P) = - !.2 -[T .. ( Q.,P) + T .. (Q,P)] +T"J. .. ( Q,P) = o, 
J.J J.J JJ. J 

in which 

respectivelyo Then, 

are the surface tractions on B of 

e •• (P) = r T(Q) • u! .(Q,P) da- + JDF(Q). 0 u.' .(Q,P) d'ro 
J.J J. J.J J.J 

B 

Moreover, 

S
1
!J.(Q,P) = ~ [s! .(Q,P,P) + S! .(Q,P,P )], 

~ i,J O J,J. 0 

where S!(Q,P,P) is defined as in Theorem 6.1. 
J. 0 - ----------

* S., s s 
ij' ij' ij' 

(6022) 

Note that S~j is uniquely defined41 as the solution of a second 

boundary-value problem in D + B. By virtue of (5.7), (5.8), (5.9), the 

singularity of S . . +. S.. at P is self-equilibrated; hence, the boundary 
J.J JJ. 

condition (c) for * s .. 
J.J 

satisfies Requirement (d) of Theorem Jo4, which is 

necessary for the existence of * S .. if D is bounded. 
J.J 

We shall deduce the present theorem from Theorem 601. To this end, 

define a state S!1 . (Q,P,P ) through 
J.J 0 

l . 
S1.' .(Q,P,P )1 = -

2 
(S.1 • + S~ . ), 

J.J ' 0 i,J J,J. 

where S!(Q,P,P) is defined in Theorem 6.1. If we compute the strains J. 0 

e .. (P) belonging to S(Q) 
J.J 

of Theorem 6.1 from the displacements (6017), 

with the aid of the strain-displacement relations (3.3), we obtain42 {6.22) 

4lwithin an arbitrary additive rigid displacement field. 

42It is not difficult to show that a single differentiation with respect 
to the coordinates xi of P of the improper volume integral in (6.17), 
may be performed under the integral sign. The proof of this statement is 
strictly similar to the proof of Theorem II on P• 152 of [8Jo 
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40 

with u!.(Q,P) replaced by u~ .(Q,P,P ). It remains to be shown that 
l.J 1J 0 

St' .(Q,P,P ) coincides with the state S! .(Q,P) of Theorem 6.2. 
l.J O l.J 

Let 

S Q,P,P = ~ S . + S . , ij ( ) _ 1 [ i j ] 
o o ~ o,J 0,1. 

iHf- - 1 [ *" * ] S. (Q,P,P) =-2 S . . + S .. , 
l. 0 1,J J,1. 

. * S1 (Q,P,P) and S.(Q,P,P
0

) being the states defined in Theorem 601. Since 
0 0 1 

S . . (Q,P) = - S . . (Q,P), it follows from (6.24), (6.25), and (6013) that 
l.J 1.,J 

St1 .(Q,P,P ) = - !
2 

[s .. (Q,P) + S .. (Q,P)] 
l.J O l.J Jl. 

. . ff 
+ 51.J(Q,P,P) + S. (Q,P,P ). 0 0 l. . 0 

Comparing (6.26) with (6.20), we note that s1j(Q,P) = Sij(Q,P,P
0

) follows 

if we show that Sij(Q PP) is the null-state and that S~(Q,P) = S~(Q,P,P ) . 
0 ' ' 0 1 l. 0 

Indeed, an elementary computation, based on (6.14), yields, 

whence 

state. 

-i (- - - ) -k( ) u . = a. x a. • a. u Q,P. o,J J K l. . 

ui . + uj . = o and thus, according to (6.25), Sij 
0 o,J 0,1. 

(6027) 

is the null-

With a view toward verifying that s:(Q,P) = S~(Q,P,P
0
), observe that 

both states are regular in D + B and, by Theorem 3.3, must be identica143 

if their surface tractions on B coincide. A direct computation, involving 

(3.7), (6.15), and (6.25), confirms that ~(Q,P) = TH-((~,P,P) on B, which 
0 

completes the proof of the theorem. 

43see Footnote No . 41. 



Lauricella [7} establishes (6.22) directly and then merely states the 

usual line-integral representation for the displacement field of S(Q) in 

terms of the components of strain. Love [2], art. 169, and Trefftz [19], 

p. 124, present a rough sketch of the proof of Theorem 6.1. Both these 

authors specify merely the stress-resultants of the singularity of 

S!(Q,P,P) 
l 0 

at P · in view of our observations following Theorem 5.2, this o' 

is insufficient for a unique characterization of S!. 
l 

The formati on of e .. (P) from (6.22), at once leads to Betti's formula 
ii 

for the dilatation in terms of the surface tractions. 44 The singular states 

S! and S!. of Theorems 6.1 and 6.2 play a role which is analogous to that 
l lJ 

41 

played by Green's function of the first kind in connection with the Dirichlet 

problem. Formulas (6.17) and (6.22) reduce the solution of the second 

boundary-value problem in a given region D + B to the determination of 

the complementary states appropriate to D + B. 

44 See [2], p. 234. 



7. Limit-Definition of Concentrated Surface Loads 

We turn now to the definition through a limit process of the solution 

to problems involving concentrated surface loads and, without loss in 

generality, confine ourselves to the case in which the body forces are 

absent. 

Theorem 7 .1: Let D + B be ~ regular region of space and let { QQ'.,} 

(ct, = 1, 2, ••• N) be N distinct points on B. Let A~) (n = 1, 2, ••• ) 

be N sequences of closed subregions of B ("load regions") such that 

/\~n), for all n and ct,= 1, 2, ••• N, is ~ regular surface containing 

Qct, in its interior, and 8 t) _., 0 ~ n --+ oo, where 8 ;;) is the maxi

~ diameter of At) . 
Let {td,} (<X-= 1, 2, ••• N) be~ set of vectors ("concentrated loads") 

and f(n)(Q) be~ sequence of functions ("replacement loadings") defined . 

for Q on B and such that 

(1) f(n\Q) = 0 for Q ~ 1-.!! A~) (ex,= 1 , 2., ••• N); 

(2) l f(n) dCJ"--. L<XJ as n.....,.. 00 , 

'A(n) 
~ 

(3) r I :r(n) r de; is bounded as n ~ co. 
J (ri) - -
½.~ 

Let S(n)(Pl be~ sequence of sta tes with the properties: 

(a) S(n)(p), is regular and isotropic in D + B for F = O; 

(b) for Q· ·-on B, with T (Q) - - -- * continuous 

on B, 

(c) u(n)(Po) = wCn)(Po) = o, where po is~ point of D~ 

42 



Then S(n)(P), together with its first space-derivatives,~ n-. oo, 

is unifor mly convergent in every closed subregion of D + B which does not - ----- ----=-- - --- --- ----- - -- -
contain any point Q . The limit state S(P) = lim S(n)(P) is independent Ci.,- ----
of the particular choice of the sequences A;;:f -:n: f(n). Moreover, for 

P in D, the limit state S admits the representation: 

N 

O uJ(Q,P,P ) do-+~ L O u! (Q ,P,P ), 
1 0 Cl(, 1a; 0 

<t, == 

(7ol) 

N 

do" +~ ; La,· li{/QaePJ, (7. 2) 

'I.: .(P) = /\b . . ekk + 2ue . . , 
J.J 1J r 1J 

(7.3) 

where ui(Q,P,P
0

) and u:{_/Q, P) ~defined~ i n Theorems 6ol ~ 602 3 

respectively. 

Here T*(Q) are the distributed surface tractions prescribed in the 

concentrated-load problem under consideration. We proceed to the proof 

of the theorem. Applying Theorem 6.1 to the regular states S(n)(P), we 

have, 
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uin) (P) = J T*(Q) • U:i (Q,P, P
0

) d<T + i: 1 :r<n\Q) ~ ii1 (Q,P ,P
0

) de,- (7 .4) 
B d-=l¼(n) -

c(, 

for all P in D. Since u~n) (P) is continuous in D + B, 
1 

lim u~n) (P) = u~n) (Q ) , 
p-+ Q· 1 1 0 

0 

where Q is a point of B. We assume henceforth that Q 
0 _ 0 

{ Qct.} (ex,= 1, 2, ••• N). Then there exists M > 0 such that 

A~)~ For such a choice of n, 

(7.4) is a continuous function of 

plies that Q 
0 

is not in 

of the second integral in 

(7 .5) 

is not in 

n>M im-

the integrand 

P at P = Q 
0 



and 

i f(n)(Q) • u,!(Q,P,P ) d<1" 
~ (n) i o 

Cl- N (7.6) 

=~ l :r(n)(Q). u!(Q,Q ,P) 
( ) 

l. 0 0 
d.,= n n 

CL 
Equations (7.4), (7.5), (706) assure that 

lim r T...,(Q) • u! (Q,P,P ) da-
p..,. Qo JB-,.-; . 1 o 

(7-7) 

exists. 

By (7.1) and (7.4), 

l. l. ( ) l. 0 
u~n) (P) - u. (P) = ~N {l :r<n\Q) • u.'(Q,P,P ) dc,-

ct,= ~ 

- I:~. iiI (QceP,Po)} (7.8) 

in which u.(P) is given by (7ol), and provided . n >' )(. Furthermore, 
J. 

lim u.(P) E u.{Q) according to (7.1), (7.4), (7o5), (7.6), (7o7), 

exists, and (7.8) remains valid for all P in 

(C(.= 1, 2, ••• N). 

P-+~ J. l. o 

D + B, but not in f~cx.} 

Thus, for P in any closed subregion '· E of D + B which does not 

contain any of the points Qc:£ and for n > M, we may write, 

I uin) (P) - up) I .e t; I 1~3)::'l (Q) I I ii{(Q,P,P o)- \i;'.(Qa,:P,P o) I da-

7.9) 

+ ii{ (QcCP,P 0 ) • [ i~:t) (Q) da-- LJ } • j 
The second term in (7 .9) tends to zero uniformly for P in E as n -. oo 

since u!(Q~,P,P) is bounded for P in E, and in view of Hypothesis (2). 
J. u., 0 
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Moreover, clearly, the integral in the first term of (7.91for all P in 

E, is bounded by 

max lu}(Q,P,P )- u.!(QdJP,P )I 
(n) 1. o 1. o 

Q on ~<:Iv 

(7ol0) 

which uniformly tends to zero by Hypothesis (3) and because ii! ( Q,P ,P ) 
J. 0 

is 

continuous with respect to Q for 

while g(n) -+ 0 
<X, 

as n-+ co. 

We have shmm that u~n)(P) 
J. 

Q in A (n) 
. r:L and P in E if n > M, 

uniformly converges toward u.(P) 
J. 

of 

(7.1), for P in ·E. To conplete the proof of the theorem, we have yet to 

establish the uniform convergence of the strains e~~)(P) 
J.J 

toward e .• (P) 
J.J 

of (7.2), as well as the uniform convergence in E of the first space-

derivatives of u~n)(P) 
J. 

strictly analogous means. 

and e~~)(P); thi s, however, is accomplished by 
l.J 

Theorem 7.1 is the counterpart, in connection with concentrated surface

loads, of Theorem 4.2, which supplies the limit definition of internal con

centrated loads. It should be noted that while the exi.~tence of the sequence 

of approximating states S (P) 
n in Theorem 4.2 was demonstrated, the exist-

ence of the approximating states in Theorem 7.1 is postulated. 

Hypothesis (3) of the present theorem is analogous to Hypothesis (d) of 

Theorem 4.2; it could easily be weakened and is implied by Hypothesis (2) 

in the event that the replacement loading on each load regi on constitutes 

a system of tractions which are parallel and of the same sense. Theorem 

-7 .1 is readily extended to the limit definition of the solution to a mixed 

boundary-value problem involving concentrated surface loads. 

Definition 7.1: The limit state S(P) of Theorem 7.1 is said to constitute 

the solution of the second boundary-value problem for the region D + B, 



characterized by the surface tractions T (Q), t he c oncentrated loads L"' * - ------ --- v.; 

applied a t the points Qce _an_d_by _v_an_i_·s_h_i_n=g b_o_d_y f_o_r_c_e_so 

Theorem 7 o2: The limit state S(P) of Theor em 7 ol has the properties: 

(a) S(P) is~ r egular i sotropic st ate, corresponding to vanishing 

body forces, in D + B, except for point-singularities at every point Qol, 

f or which Lct,,f O. 

(b ) T(Q) = T*(Q) at all r egular points of B which are not in 

1, 2, ••• N). { Q<X,} (~= 

(c) lim l T di= Let,(~= 1, 2, o o .N), where L_J8) is the 
s-. 0 L.J,8) 

intersection with D + B of~ sphere of radius S, centered at Qct the 

out er normal of Lex, being directed t oward Q<L 

(d) 7,,.(P)=O(r- 2
) as r""+O~ where r~ is the distance f rom P lJ d., - ~ -- ~ 

t o Qct 

Propert y (a) f ol lows at once from Definitions J. 2, 4ol, 4o2, a s well 

as from the f act that t he sequence of r egul ar, i sotropic states S(n) of 

Theorem 7.1, together with its f irst space derivatives, converges uniformly 

in any closed subregi on of D + B which contains no points i n {QJ. 
Consider a r egular point Q

0 
of B, which is not in { Qct.} (cx. = 1, 2 3 

••• N) , and r ecall that the maximum diameter g(n) of the load region A(n) , 
<X, <X, 

i n Theor em 7.1, tends t o zero as n-. co . By Hypotheses (1) and (b) of 
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Theorem 7.1 , Property (a) in the present theorem, and since S(n)(Q) __..S(Q) 
0 0 

as n -., co, given E > o., t here exists M ;:,,, 0 such that n > M implies 

whi ch confirms Property (b ) of t he limit-state. 



Let I:J,S), i n the s ta t ement of Property (c), contain no points in 

{QJ (ex,= 1, 2, ••• N). It follows f r om the uni form convergence of S(n)(P) 

toward S(P) in ever y cl osed subregion of D + B which excludes the set 

de;= l im l T(n) 

n-. oo La:. 
dO". (7.11) 

Next, let TrJ8) be t he intersection with B of t he solid sphere 

of r adius S, centered at Qci Choose S small enough so that lTct, con

tains no member of t he s et {Q_p} (J3= 1, 2, ••• N) for which p ~ c:J,,. Si nce 

S(n)(P) satisfies t he homogeneous equilibrium equations in D + B, and 

f rom Hypothesis (b) of Theorem 7 .1, we have 

for all n sufficiently l arge to insure that 

i n -TTJ8). Hypothesis ( 2) and (7ol2 ) yield, 

A(n) 
c(. 

lim t T (n) de;= r T• ~ dcr + tc(.,, 
n-.oo · ¼ 

CL CL 

which, t ogether wit h (7 .11 ) , impl ies 

Thus Property (c) is ver i fied . 

(7 .12) 

is wholly contai ned 

(7.13) 

(7 .14) 

Acc.or ding to Theorem 602 and Equations (5 .5), (5.6), u!. = O{r- 2) 
J.J 

as 

r-+- O, if r is t he di stance from Q to P. Hence, Property (d) follows 

dir ectl y from (7 .2) and (3 . 6_). This compl etes t he proof of Theorem 7 .2, 

which is t he analogue of Theorem 4o4, 
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Let Act,= J. dO' be the area of L<t: Then Property (c) in 

Let, 
'Th.eorem ·7.2 implies 

C' lim g-2AJ8) > o, 
0 -.o 

(7.15) 

unless Let,= o. Condition (7 .15) is certainly met if the load point Qcx., 

is a regular point of B. This condition need not be satisfied, however, 

in case QC(, lies on a singular edge or on a corner of B. To illustrate 

this eventuality, let Qot, be the origin and let B,· in a neighborhood of 

Qce be a surface of revolution whose axis is the x3-axis. Thus, let B 

locally admit the representation, 

(7.16) 

2 2 1/2 
where f = (x1 + x 2) , f(x

3
) is continuously differentiable in 

0 !f x
3 
~ a, f(O) = f 1 (0) = o, and f(x

3
) > 0 in O < x

3 
~ a. For suf

ficiently small 8 we have here, 

(7.17) 

and a trivial computation yields, 

(7 .18) 

In the sense of the foregoing observation, the body is "incapable of sup-

port ing a concentrated load" at the point Q under consideration. ex., 

It will become apparent in the following section that Properties (a), 

(b), (c), and (d~ in Theorem 7.2 uniquely characterize the limit-state 

S(P) 
I 

of ' Theorem 7.1. On the other hand, as pointed out in the Introduction 

and demonstrated in (l], there exist "pseudo-solutions" of concentrated-load 
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problems which possess Properties (a), (b), and (c) 1 without being identical 

with the limit-state S(P), defined in .Theorem 7.1. Thus, the traditional 

formulation of concentrated-load problems in terms of Properties (a) 1 (b), 

and (c), is incomplete. Moreover, any expectation, based on an appeal to 

Saint-Venant's principle, that pseudo-solutions represent useful approxi

mations to S(P), is unfounded, as was shown in [l]. This observation is 

not in conflict with a rigorous formulation of the principle [21], [22]. 
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8. Extension of the Uniqueness Theorem to Concentrated Loads 

In this section we state and .prove a uni queness theorem appr opr iate to 

pr oblems involving internal concent r ated loads as well as concentrated sur= 

face loads. 

Theorem 8 .1: Let D + B be~ regular region of spaceo Let Bu and Bt 

be subregions of B such t hat 

be ~ set of N distinct points such that each Qa, li es either in D or 

be the intersection with D + B of ---------in the i nterior of Bt . Let LJS) 
~ sphere with radius 8, centered at Qd.l the outer normal of L ct., being 

directed toward Qct,• 

Let S and S' be two states with the following properties: 

(a) S and S 1 ~ (not necessaril y isot ropic) regular states in 

D + B, corresponding to t he~ body-force f i eld , except possibly~ 

point s ingularities at Qci,( ci.= 1, 2, o. oN); 

(b ) u' = u:11 £!!, Bu, T' = T11 at all r egular point s of B,. at whi!:!h v--· 
s and S' ~ non-s i ngular; 

(c) lim } T• dO" = lim ~); do, (Sol) 
8-+ 0 LJ~) g .... o 

( ' -2) ,t~• .(P) = O(r-;}) d) 'T} . (P) = O(r ct., and as rcx.--+0, where roe, lJ lJ -
is the distance from P to Q<::C 

Then rrJ . ( p) = ~· . ( p) lJ lJ for all P in D + B and not in 

( a'.,= 1,. 2, ••• N). 

We note that Theorem 8.1 reduces to t he classical uniqueness theorem~ 

Theorem J.J, in case S and S 1 are free from singularities in D + B. 

To prove t he theorem, consider the state 

S(P) ~ S 1(P) ~ S11 (P). ( 802) 

In view of Hypotheses (a), (b), (c), and (d), S(P) has the properties: 
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(A) S(P) is regular in D + B, corresponding to F(P) = o, with the 

possible exception of point singularities at Qo{, (ct,= l.9 2, ••• N); 

(B) u = 0 on Bu and T = 0 at all regular points of Bt at which 

S is non-singular; 

(C) g ::.;:'o )LJ,i/0- = O (al,= 1, 2, ••• N); 

(D) 71/P) = O(r:) as r~-. o. 

Evidently, there exists 8- > 0 such that O < 8 < 8 
0 0 

implies~ 

(ct,) no two members of the set of solid spheres O ~ r ct.~ 8 {al,= l .9 

2, .... N) intersect; 

Cp) if Qct, is in D, the solid sphere O ~ r a(,~ 8 does not inter

sect B; 

( y) if Qa::, is on Bt' the solid sphere O ~ rat ..!f 8 intersects 

neither Bu nor any edge or vertex of Bt which does not contain QofJ 

and the intersection of LJ,8) with Bt is a closed regular curve., 

Figure 1 shows a schematic -diagram of D + B ' together with the points 

Qcx, and the associated spherical surfaces L.J,8). Let iJ (8) + 6(8) be 

the closed region, with the boundary f,(8), consisting of all points in 

D + B and not in O ~ rct. < 8 (ex,= 1, 2, oo•N) . By (a..), {J3), and (y), 

J}(S) + ~(S) is a regular subregion45 of D + B, in which S(P), ac

cording to (A), is regular. We may, therefore, apply the energy formula 

(3.10) to S(P) in l:J + ~, and, by virtue of (A), (B), (~), (p), (y), 

obtain, 

h5see the definition of a "regular reg i on of space" given in Section 2. 
Conditions (ex.), (p), and (y) assure that ~(g) consists of a finite num
ber of non-intersecting closed regular surfaces. 
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j N J T • ii dCi= L T 
B(8) <:L= 1 LJ&) 

(0 < g < b ) . 
0 

• ii dCi = 21 Wd'T'. 

{B (~) 

Furthermore, the intersection of O < a ~ r ~ .(_ S < S
O 

with D + BJ 

for every fixed cf., is also a regul ar region of space in which S(P) , in 

view of (A), satisfies the homogeneous equilibrium conditions. This ob

servation, together with (B), (C), (<:L) , (p) :; and Cy), yields, 

J T dcr= 0 for O < h < 8
0 

(ct.= 1, 2, ••• N). 

LJS) 
To establish the theorem, we need to show that r.' . (P) = 0 for every 

J.J 

P in D and not in {QcX,} (cf,= 1, 2, • • • N). To this end it suffices to 

show that 

lim 
& -+ 0 

j W d'T = 0;1 

ceci) 
since W is a positive definite functi on of the components of stress. Thus, 

we need to prove that the improper strain-energy integral J W d?" is con-

vergent and has the value zero. D 

We turn to the proof of (8.6). According to (8.4), we merely have to 

demonstrate that given E > 0, there exists ~l > 0 such that 

0 < b < S1 implies, 

d~ < €.. (no summation ) 

(8 . 7) 

(ct,= 1, 2, ••• N) . 
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For convenience, we shall henceforth write L(b), T, and u, in place of 

and u., respectively. Thus, examine the integral, 
l 

I(b) = \ T(Q,8) u(Q,b) do

JL(b) 
(0 < g <. g ) ' 

0 
(8.8) 

where Q is a point on L(b) and, f rom (8. 5), 

J T(Q,S) da-= 0 

L<S) 
(0 < 8 <. s ). 

0 
(8.9) 

Let L(l)(S) and L( 2)(8) be the subsets of L,(g) which are 

characterized by the requirements, 

Then, 

T ( Q, 8) ~ 0 for Q in L( 1 ) (8) , 

T( Q,8) ~ 0 for Q in L( 2 )(~). 

JL (~ dcr = JL(l) (ri do-• JL( 2) (;; do; 

and, by (8.9), 

(8 .10) 

(8 .11) 

(8.12) 

Equations (8.10), (8.111, and (8.12), in conjunction with the generalized 

fir$t mean-value theorem for surface integrals, assure the existence of 

t wo points Q1 (S) and Q2(S) in L(~), such that 

da-

(8.13) 

(0 < 8 < 8 ) . 
0 
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By (D), there exist M > o, 82 > 0 (82 < 81 ), such that 

jT(Q,8) I < M/82 for O < 8 < 8
2 

and all Q i n 2JS). Hence, 

1 T(Q,8) do-< 47l'M . 
L(l\g) 

(8.14) 

Moreover, by (A), u(Q,8) is continuous on ~(b) so that, given E. > O, 

Equations (8.13), (8.14), and (8.15) yield 

j r(S) j < E if o < ~ < S 1 , (8.16) 

which completes the proof of the theorem. 

Theorem 8.1 is readily extended to mixed-mixed boundary-value problems , 

as well as to the case in which the boundary B, assumed to be sui t ably 

smooth, extends to infinity. The t heorem confirms, in particular, t hat 

Properties (a), (b), (c) in Theorem 4.4 and Properties (a), (b), (c), (d) 

i n Theor em 7.2, uniquely char acterize t he Kelvi n- state and the limit-state 

of Theorem 7.1, respectively . On the basis of the present generalized 

uniqueness theorem, we arrive at the following unique formulati on of mixed 

boundary-value problems, involving internal concentrated loads as well as 

concentrated surface loads: 

Let D + B, Bu' Bt' {Qct,}, rct.! and "2:,JS) (a,= 1, 2, ••• N) 

as in Theorem 8.1. Given F*(P) for P i n :D, u*(Q) for Q 

be defined 

on B , 
- u 

T*( Q) for Q on Bt' Let. ( cl= 1, 2, ••• N), and the elastic constants 

cijmn' find~ state S(P) with the properties: 
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(a) S(P) is regular in D + B, corresponding to F = F*, except for 

point singularities at each Qd, for which Let,~ Oo 

(b) u = u* ~ Bu and T = T* at all regular points~ Bt which 

are not in 

(c) 

(d) 

Necessary conditi ons for the existence of the solution to the foregoing 

problem, analogous to Conditions (a), (b), (c), (d) of Theorem Joh, are im

mediate and need not be listed here explicitlyo To these we add Condition 

(7 .15). 

The significance of this alternative formulation of concentrated- load 

problems, which derives its physical motivation from the limit-definitions 

contained in Theorems h.h and 7ol was di scussed in the Introduction to 

the present paper~ 
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9. Concluding Remarks 

As emphasized in the discussion following Theorem 3.4, not only con-

centrated loads but also most instances of discontinuous distributed 

loadings, are beyond the range of validity of the classical uniqueness 

theorem, Theorem 3.2. The traditional formulation of problems character

ized by discontinuous distributed surface tractions is, in general, not 

unique, which fact was illustrated in Section 3. 

A natural and unique definition of the solution to the second boundary

value problem for an isotropic medium, in the presence of merely piece,vise 

continuous surface tractions, may be based on the Lauricella-Volterra for

mulas which were deduced in Section 6 on the assumption that S(P) is 

regular in D + B. Thus, we may use (6.17) and (6.22) to define the dis

placement and strain field of the solution, although T(Q) are here no 

longer the surface tractions of a regular state. 46 

Such a formal definition of the soluti on to a problem characterized 

by piecewise continuous surface tractions does not, however, satisfactorily 

dispose of the uniqueness questions here involved. First, from the view

point of applications, it is analytically awkward to be limited to a for

mulation of the problem which is tied to a particular integral representa

tion of the solution. Second, any specific application of the foregoing 

definition 'presupposes an explicit knowledge of the states S! 
l 

and s« 
ij' 

defined in Theorems 6.1 and 6.2; this, in turn, necessitates the solution 

of two usually highly complicated boundary-value problems. 

46Analogously, but for lack of motivation, we could have directly 
adopted (7.1), (7.2), and (7.3) as a definition of the solution to the 
second boundary-value problem in the presence of concentrated loads. 
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A possible program to be pursued in connection with the class of prob

lems under consideration, consists in first adopting (6.17), (6.22) as a 

definition of the solution; one may then study the properties of the so

lution so defined -- in particular, the character of the singularities 

present -- with a view toward reaching an extension of the classical unique

ness theorem, analogous to Theorem 8.1 for concentrated loads. Such a 

generalization of the uniqueness theorem would give rise to a practically 

useful alternative formulation of the problem in terms of intrinsic proper

ties of the solution. This task is, however, beyond the scope of the 

present paper. Similarly, uniqueness questions related to geometrically 

induced singularities, are in need of further attention. 
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