Viscoplastic and Creep Crack Growth Analysis by the Finite Element Method

Item

Title
Viscoplastic and Creep Crack Growth Analysis by the Finite Element Method
Date
1981
Index Abstract
Coming Soon
Photo Quality
Complete
Report Number
AFWAL TR 80-4140
Creator
Hinnerichs, Terry D.
Corporate Author
Materials Laboratory
Laboratory
Materials Laboratory
Extent
190
Identifier
ADA105120
Access Rights
Approved for public release; distribution unlimited
Distribution Classification
1
Contract
Laboratory Research - No Contract
DoD Project
2307
DoD Task
2307P1
DTIC Record Exists
No
Distribution Change Authority Correspondence
None
Abstract
Creep crack growth in a nickel base alloy at elevated temperatures was analyzed through a hybrid experimental-numerical (HEN) procedure. This HEN procedure consisted of simultaneous use of creep crack growth test displacement data from center cracked plate specimens of IN-100 at 1350 F and a theoretical finite element model of the test specimen. A two-dimensional (constant strain triangular) finite element program was developed which accounts for both nonlinear viscoplastic material behavior and changing boundary conditions due to crack growth. Three viscoplastic material models -- (1) Malvern Flow Law, (2) Norton's Creep Law, and (3) Bodner-Partom Flow Law -- were incorporated into the program. These time dependent material models were numerically integrated through time by a linear Euler extrapolation technique. A variable time step algorithm was included that maximized time step size during the analysis while maintaining good accuracy. This program was used as the plane stress theoretical model for the HEN procedure to analyze sustained load creep crack growth. A method for getting creep crack growth behavior solely from high resolution displacement measurements, in conjunction with a cracked specimen model which utilizes realistic constitutive relationships, has been developed.
Report Availability
Full text available
Date Issued
1981-07-01
Provenance
IIT
Type
report
Format
1 online resource